

Traffic Noise Impact Assessment

Ridgeview Residential Development Stages 8 to 12

Lot 101 on SP297314, Raynbird Road, Narangba

Satterley

Project No.: ATP170921

Project Name: Raynbird Road, Narangba

Document No.: ATP170921-R-NIA-02_Stages 8-12

August 2022

Document Control Record

Prepared by:	Aidan Daniels
Position:	Engineer – Acoustics
Signed:	Appanels
Date:	3 August 2021

Approved by:	Sasho Temelkoski RPEQ 13551
Position:	Managing Director
Signed:	Stewns
Date:	3 August 2021

REVISION STATUS

Revision No.	Description of Revision	Date	Approved
0	Issue 1	15 April 2021	Sasho Temelkoski
1	Issue 2	3 August 2022	Sasho Temelkoski

Recipients are responsible for eliminating all superseded documents in their possession.

atf ATP Engineering Trust ABN: 95 634 079 845

Gold Coast

34 Lakefront Crescent Varsity Lakes QLD 4227 Ph: (07) 5593 0487

E-mail: admin@atpconsulting.com.au
Internet: www.atpconsulting.com.au

Brisbane

Unit 34, 30 Anstey Street Albion QLD 4010 Ph: (07) 3256 1747 Perth

Suite 59, 102 Railway Street West Perth WA 6005 Ph: (08) 9265 1424

-

This report is copyright and is to be used only for its intended purpose by the intended recipient, and is not to be copied or used in any other way. The report may be relied upon for its intended purpose within the limits of the following disclaimer.

RELIANCE, USES and LIMITATIONS

This study, report and analyses have been based on the information available to ATP Consulting Engineers at the time of preparation. ATP Consulting Engineers accepts responsibility for the report and its conclusions to the extent that the information was sufficient and accurate at the time of preparation. ATP Consulting Engineers does not take responsibility for errors and omissions due to incorrect information or information not available to ATP Consulting Engineers at the time of preparation of the study, report or analyses.

Client: Satterley Page i

Executive Summary

ATP Consulting Engineers (ATP) was engaged by Satterley to prepare a traffic noise impact assessment (NIA) for the Ridgeview residential development at Lot 101 on SP297314 Raynbird Road in Narangba.

A portion of the development is located within a haulage buffer as Raynbird Road is one of two haulage roads for the Boral quarry located approximately 3km west of the development. The Key Resource Area transport route (*haulage road*) is marked with a 100m wide buffer zone (either side) to trigger consideration of current and future traffic noise along the haulage road.

This report has been prepared in support of RAL Application for Stages 8 to 12 of the Ridgeview development.

This is Issue 2 of the report considering the latest development layout dated 24 May 2022, and latest earthworks dated 11 July 2022.

Traffic noise impact assessment for the proposed development has been carried out in accordance with the Moreton Bay Regional Council *Planning Scheme Policy – Noise*.

Within a 10-year planning horizon, at the time of full establishment of the residential development, there is a potential for traffic noise impact on the future dwellings on the allotments nearest to Raynbird Road.

In accordance with the adopted streetscape strategy for the development, it is proposed to construct noise barriers along Raynbird Road to protect the development from traffic noise impacts.

The recommended noise barriers are to be constructed along the southern boundary of Lots 1266 to 1278, and be of varying height, with the top of the noise barrier 2.0m to 3.8m above the finished surface level along the edge of the allotment. The alignment and heights of the noise barrier fences are presented in Table 6.1 and Figure 6.1 of this report.

The primary objective of the recommended noise barriers is to provide an acceptable level of noise amenity at the private open spaces (backyards) and to protect the ground floors of the future dwellings.

The results of the traffic noise modelling indicate that, with the proposed noise barriers, the noise levels at the private open spaces are in compliance with the criteria of 57dB(A) L_{10,18hr} (free-field) at all allotments within a 10-year planning horizon.

However, the ground and upper floors of some allotments nearest to Raynbird Road will be exposed to residual traffic noise, although the traffic noise impact is relatively minor:

- At the ground floors, 13 allotments nearest to Raynbird Road will be subject to external façade traffic noise levels corresponding to QDC Noise Category 1.
- At the upper floors, 3 allotments will be subject to Noise Category 1; and 10 allotments will be subject to Noise Category 2.

Client: Satterley Page ii

The dwellings must be built to comply with QDC MP4.4 Noise Categories listed in Table 6.2 of this report or, alternatively, be acoustically designed in accordance with AS3671-1989.

Provided the recommended planning and design noise control measures are implemented in the construction of the residential development, the road traffic noise from Raynbird Road will not impose any further constraints on the establishment of the development.

Client: Satterley Page iii

Table of Contents

1.	Introd	duction	1
	1.1 F	Project Background	1
	1.2	Study Objectives	1
	1.3	Subject site	1
2.	Exist	ng Noise Amenity	3
	2.1	Noise Measurement Location	3
	2.2 l	nstrument Used	4
	2.3 N	Meteorological Conditions	4
	2.4	Noise Measurement Results	4
3.	Traffi	c Noise Criteria	6
	3.1 E	External Traffic Noise Levels	6
	3.2 (Queensland Development Code (QDC) MP4.4	7
	3.3 I	nternal Noise Criteria	7
4.	Traffi	c Noise Calculation Methodology	8
	4.1 N	Modelling Assumptions	8
	4.2 F	Road Noise Model Validation	9
	4.3	Fraffic Noise Calculation Model (Year 2031)	10
5.	Calcu	ılated Traffic Noise Levels	14
	5.1 [Detached Dwellings	14
	5.2 F	Private Open Spaces	14
6.	Discu	ssion and Recommendations	16
7.	Cond	lusions	21
8.	Refe	ences	22
	bles		
		Noise Measurement Locations	3
		Noise Measurement Results – Location 1	
		Noise Measurement Results – Location 2	
		External Noise Criteria for New Residential Development	
		QDC Noise Categories	
		Residential Internal Design Sound Levels	
		Data and Assumptions – Traffic Noise Model	
		Traffic Flow Data for Validation	
		SoundPLAN Validation Results	
Ta	ble 4.4	Traffic Flow Data for 10 Year Planning Horizon	10

Client: Satterley

Table 4.5 Finished Pad Levels of Allotments	12
Table 5.1 Traffic Noise Levels at Building Facades – Year 2031	14
Table 5.2 Traffic Noise Levels at Private Open Spaces – Year 2031	14
Table 6.1 Proposed Noise Barrier RLs – Stage 12	16
Table 6.2 Acoustic Requirements for Building Construction	20
Figures	
Figure 1.1 Site Location and KRA Transport Corridor	2
Figure 2.1 Noise Measurement Location	3
Figure 4.1 SoundPLAN Traffic Noise Model – Overview	11
Figure 4.2 SoundPLAN Traffic Noise Model – Detail 1	12
Figure 6.1 Noise Barrier Alignment – Stage 12	18
Figure 6.2 Typical Timber Acoustic Fence	19
Appendices	
	10
Appendices	10
Appendices Appendix A – Proposed Development	10
Appendices Appendix A – Proposed Development Appendix B – Site Photos	10
Appendices Appendix A – Proposed Development Appendix B – Site Photos Appendix C – Meteorological Data	10
Appendices Appendix A – Proposed Development Appendix B – Site Photos Appendix C – Meteorological Data Appendix D – Noise Monitoring Results	10
Appendices Appendix A – Proposed Development Appendix B – Site Photos Appendix C – Meteorological Data Appendix D – Noise Monitoring Results Appendix E – Moreton Bay Regional Council – Traffic Count Data	10

Client: Satterley

Acoustics Glossary

A-weighting Correction to sound levels to mimic the response of the human ear at low sound

frequencies.

AADT Annual average daily traffic. The total traffic flow over a 24 hour period along a specific

segment of road.

Decibel (dB) (1) Degree of loudness (2) A unit for expressing the relative intensity of sounds on a

scale from zero for the average least perceptible sound to about 130 for the average pain level. A unit used to express relative difference in power or intensity, between two acoustic signals, equal to ten times the common logarithm of the ratio of the two

levels, one of which is a standard reference value.

dB(A) The A-weighted sound pressure level.

Façade adjusted The noise level at 1m from a building façade is calculated by adding 2.5dB to the free-

field noise level to account for sound reflected from the building façade. The external

noise levels at the buildings facades are "façade-adjusted".

Free-field Noise level without any reflected sound from buildings or other hard, reflective surfaces

(except for the ground plane).

LAeq,T "Average-energy" sound level used in situations where sound varies over time. LAeq,T

is the A-weighted sound pressure level that has the same energy as the fluctuating

sound over the time period T sec.

LA10,T is a statistical parameter that is the A-weighted sound pressure level that is

exceeded for 10% of the measurement time T. Used as a traffic noise descriptor in

Queensland.

LA10,18hr The arithmetic average of the 18 individual LA10,1hr values between 6:00am and

12:00am (midnight). It is a derived descriptor which is used as a main traffic noise descriptor in the Calculation of Road Traffic Noise (CoRTN) procedure developed by

the UK Department of Environment, Welsh Office, HMSO, 1988

L_{A90,T} Background sound level. L_{A90,T} is a statistical parameter that is the A-weighted sound

pressure level that is exceeded for 90% of the measurement time T.

Noise Unwanted sound.

Sound pressure The fluctuations in air, measured in Pascals (Pa).

Sound Pressure Level, L_p (SPL)

Logarithmic measure of sound pressure on a decibel scale, referenced to the human

hearing threshold of 2 x 10⁻⁵ Pa.

Weighted Sound Reduction Index

(R_w)

A single-number quantity which characterises the airborne sound insulation of a material or building element over a range of frequencies.

Client: Satterley Page vi

1. Introduction

1.1 Project Background

ATP Consulting Engineers (ATP) was engaged by Satterley to prepare a traffic noise impact assessment (NIA) for the Ridgeview residential development at Lot 101 on SP297314 Raynbird Road in Narangba.

A portion of the development is located within a haulage buffer as Raynbird Road is one of two haulage roads for the Boral quarry located approximately 3km west of the development. The Key Resource Area transport route (*haulage road*) is marked with a 100m wide buffer zone (either side) to trigger consideration of current and future traffic noise along the haulage road.

This report has been prepared in support of RAL Application for Stages 8 to 12 of the Ridgeview development.

This is Issue 2 of the report considering the latest development layout dated 24 May 2022, and latest earthworks dated 11 July 2022.

1.2 Study Objectives

Study objectives are as follows:

- Site-specific noise measurements using automated noise loggers to obtain data on the existing traffic noise levels over a typical seven day period.
- Consideration of the relevant performance outcomes and traffic noise criteria applicable to the proposed development.
- Development of a 3D noise propagation model considering the development layout and future road traffic along Raynbird Road.
- Assessment of traffic noise levels (L_{10,18hr}) from Raynbird Road, within a 10-year planning horizon, at the facades and private open spaces of the proposed dwellings.
- Recommendation of traffic noise mitigation measures.

1.3 Subject site

The Ridgeview development is located along Raynbird Road in Narangba on the land described as Lot 101 on SP297314, within the Moreton Bay Regional Council local government area.

The location of the development and the Key Resource Transport Corridor buffer zone is presented in Figure 1.1.

Client: Satterley Page 1

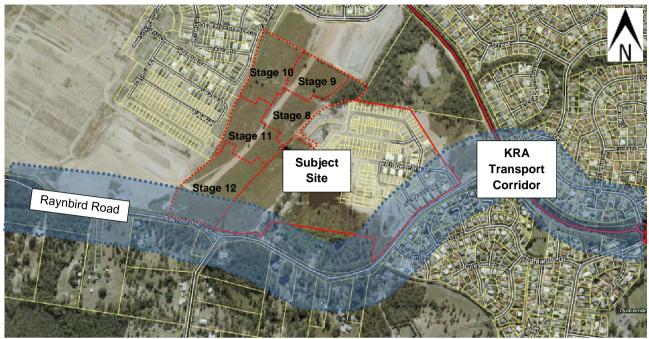


Figure 1.1 Site Location and KRA Transport Corridor

The development is located within a residential zone with the proposed dwellings consisting of one or two storeys. Each dwelling will have a patio or backyard area which will qualify as a private open space. Passive recreation area for the development is also provided with parklands at various locations.

The proposed subdivision layout and earthworks design for Stages 8 to 12 of the Ridgeview development is presented in Appendix A.

Client: Satterley

2. Existing Noise Amenity

2.1 Noise Measurement Location

Noise monitoring was carried out at the subject site to obtain information about the existing traffic noise levels for model validation. The noise monitoring locations are presented in Table 2.1.

Name	Location	Distance from edge of road	Measurement Period	Instrument
Location 1	75m west of Browns Creek Road	13m from Raynbird Road	28 September to 6 October 2017	ARL Ngara environmental noise logger
Location 2	120m east of Highlands Drive	7m from Raynbird Road	26 May to 1 June 2018	ARL Ngara environmental noise logger

Table 2.1 Noise Measurement Locations

The noise measurement locations are presented in Figure 2.1 and site photos are presented in Appendix B.



Figure 2.1 Noise Measurement Location

The speed limit along Raynbird Road is 70km/h past the monitoring location, reducing to 60km/h to the east¹. The different vehicle speeds have been factored into the noise propagation modelling as per the CoRTN procedure (refer to Section 4.1 of this report).

The eastern boundary of the development is separated from Oakey Flat Road by distance of at least 175m. Due to the large separation distance, the proposed development will not be impacted by traffic

Client: Satterley Page 3

¹ Speed limit on Raynbird Road is 70km/h at the western section (375m west of Highlands Drive) and 60km/h at the eastern section of the development.

noise from Oakey Flat Road. This is supported by observations made on site by ATP, which show that the dominant noise source is intermittent pass-by of vehicles on Raynbird Road.

2.2 Instrument Used

The noise measurements were carried out using the following instruments:

- Environmental Noise Logger ARL Ngara (S/N 87811d and 87811c); and
- Sound Level Calibrator NC 74.

The noise measurement instruments conform to AS/NZS IEC61672.1-2019 and the measurements were undertaken in accordance with AS1055-1997 and AS2702-1984. A calibration drift of <0.1 dB(A) was observed between the pre and post measurement calibrations of the instrument.

2.3 Meteorological Conditions

Light rainfall was experienced during part of the noise monitoring periods, on 2 to 3 October 2017 and 26 to 29 May 2018. The noise data recorded during periods with rain was excluded.

The meteorological data² for the noise measurement period are presented in Appendix C.

2.4 Noise Measurement Results

The results of the noise measurements at Location 1 are presented in Table 2.2 and in Appendix D.

Table 2.2 Noise Measurement Results - Location 1

_	Day	Traffic no	Traffic noise levels		Background noise levels	
Date		L _{10,18hr} (6am-12am)	L10,1hr max (6am-12am)	L _{90,18hr} (6am-12am)	L _{90,8hr} (10pm-6am)	
28 September 2017	Thursday	61	68	40	33	
29 September 2017	Friday	60	65	39	31	
30 September 2017	Saturday	59	64	37	30	
1 October 2017	Sunday	57	63	38	32	
2 October 2017	Monday	57	64	43	39	
3 October 2017	Tuesday	60	67	40	36	
4 October 2017	Wednesday	60	65	40	34	
5 October 2017	Thursday	60	65	40	35	
Arithmeti	Arithmetic Mean		65	40	34	
Arithmetic Mean – weekdays, fine weather		60	66	40	33	

Client: Satterley Page 4

² Daily weather observation data sourced from www.bom.gov.au for Redcliffe weather station (Id 040958).

Page 5

The results of the noise measurements at Location 2 are presented in Table 2.3 and in Appendix D.

Table 2.3 Noise Measurement Results - Location 2

	Day	Traffic no	Traffic noise levels		Background noise levels	
Date		L _{10,18hr} (6am-12am)	L10,1hr max (6am-12am)	L _{90,18hr} (6am-12am)	L _{90,8hr} (10pm-6am)	
26 May 2018	Saturday	64	70	41	32	
27 May 2018	Sunday	62	71	39	33	
28 May 2018	Monday	65	73	40	37	
29 May 2018	Tuesday	65	72	40	30	
30 May 2018	Wednesday	66	72	43	31	
31 May 2018	Thursday	65	71	42	31	
Arithmeti	Arithmetic Mean		71	41	32	
Arithmetic Mean – wee	Arithmetic Mean – weekdays, fine weather		71	43	31	

Client: Satterley

3. Traffic Noise Criteria

3.1 External Traffic Noise Levels

The proposed development is located along Raynbird Road which is a designated haulage road under Key Resource Area - KRA 46 administration by Moreton Bay Regional Council.

Traffic noise impacts on the noise sensitive development need to be assessed in accordance with the Planning Scheme Policy (Noise), effective 29 January 2020. The Noise Policy outlines the noise criteria applicable to the development.

The external traffic noise levels at the proposed development will be assessed using the following documents:

- Queensland Development Code (QDC) Mandatory Part 4.4 (Buildings in a transport noise corridor). The proposed dwellings must be built to comply with QDC MP4.4, which specifies the acoustic requirements for building construction based on the traffic noise levels predicted at the external facades. This assessment will identify the QDC MP4.4 noise category applicable to each dwelling at the proposed development.
- In addition the assessment is to address the requirement for each dwelling to have a private open space that meets the criteria specified in the Department of Transport and Main Roads (TMR) Development Affected by Environmental Emissions from Transport Policy, Version 4 (October 2017).

The applicable criteria from the QDC MP 4.4 and the TMR Policy are presented in Table 3.1.

Transport Location within **Development type Environmental Criteria** infrastructure **Development** ≥73 QDC MP4.4 Category 4 $L_{10,18hr}$ at 1m from 68 - 72 QDC MP4.4 Category 3 the façade **Building facades** of the 63 - 67 QDC MP4.4 Category 2 proposed building 58 - 62 QDC MP4.4 Category 1 Haul Road Residential dB(A) ≤57dB(A) L_{10,18hr} free field (measured L_{90,18hr} free field Private open between 6am and midnight ≤ 45dB(A)) spaces of accommodation ≤60dB(A) L_{10.18hr} free field (measured L_{90.18hr} free field activities3 between 6am and midnight > 45dB(A))

Table 3.1 External Noise Criteria for New Residential Development

Client: Satterley Page 6

³ TMR Policy – Table 3: State Controlled Road or Multi-modal Corridor which does not include a railway

[&]quot;Accommodation activity" includes caretaker's accommodation, community residence, dual occupancy, dwelling house, dwelling unit, multiple dwelling, relocatable home park, residential care facility, resort complex, retirement facility, rooming accommodation, short-term accommodation and tourist park

The noise criteria for accommodation activities depends on the background noise levels at the development. The noise criteria applicable to quiet areas (e.g. rural) is more stringent compared to areas with higher background noise levels (e.g. urban areas).

The existing background noise levels between 6am and midnight are lower than 45dB(A) L_{90,18hr}. Therefore, the external noise criterion for private open spaces is:

Private open spaces (free-field): ≤57dB(A) L_{10,18hr}.

3.2 Queensland Development Code (QDC) MP4.4

Buildings located in a transport noise corridor must be built to comply with QDC MP4.4. Under QDC MP4.4, the external façade traffic noise levels are grouped into five noise categories. Buildings located within Noise Category 1 or greater require acoustic treatment to the building envelope as per the deemed-to-comply specifications set out in QDC MP4.4. The traffic noise categories are presented in Table 3.2.

Table 3.2 QDC Noise Categories

Noise Category	Level of transport noise* LA10,18hr for State-controlled and designated local government roads
Category 4	≥ 73 dB(A)
Category 3	68 – 72 dB(A)
Category 2	63 – 67 dB(A)
Category 1	58 – 62 dB(A)
Category 0	≤ 57 dB(A)

^{*}Measured at 1m from building facade

The noise categories applicable to the proposed development will be determined in this report.

As an alternative to the deemed-to-comply construction specifications from QDC MP4.4, the buildings can be constructed as per the advice of a qualified acoustical engineer. The engineer can carry out floor plan specific acoustic design in accordance with AS 3671-1989 and provide acoustic design specifications for the external walls, windows and roof/ceiling to ensure compliance with the internal noise criteria from AS/NZS 2107:2016.

3.3 Internal Noise Criteria

In case of exceeding the external noise criteria, the internal criteria as specified in AS/NZS 2107:2016 must be achieved. The recommended design sound levels (L_{Aeq} dB(A)) for noise sensitive places near major roads are presented in Table 3.3.

Table 3.3 Residential Internal Design Sound Levels

Type of building	Type of occupancy	Design sound level (L _{Aeq,T}) range
	Living Areas	35 to 45 dB(A)
Residential building	Sleeping Areas	35 to 40 dB(A)
	Working Areas	35 to 45 dB(A)

Client: Satterley Page 7

4. Traffic Noise Calculation Methodology

Traffic noise levels at the proposed development, within a planning horizon of 10 years (year 20314), were calculated using SoundPLAN noise propagation modelling software.

SoundPLAN calculates traffic noise as per the procedure specified in the UK Department of Transport Welsh Office Method of Calculation of Road Traffic Noise (CoRTN). CoRTN is an accepted traffic noise calculation procedure applied widely in Australia.

4.1 Modelling Assumptions

The assumptions and data used in the traffic noise propagation model are presented in Table 4.1.

	Table 4.1 Data and Assumptions – Traffic Noise Model
Terrain	 Elevation data for the property was sourced from the concept bulk earthworks plans prepared by Peak Urban (Project No. 20-0192, Rev 3), dated 11 July 2022, which are presented in Appendix A. Elevation data for the surrounding were obtained from Department of Natural Resources and Mines Airborne Laser Scanning (LiDAR) 1 metre elevation data. Ground surface absorption factor of 0 was applied to all paved surfaces and 1 for all grassed areas.
Buildings	Single storey buildings (height 3.5m) were modelled within the development. Noise levels have been calculated at the ground floor, as well as potential upper floors (should two storey buildings be established).
Road Traffic	 Current traffic volumes were sourced from the Moreton Bay Regional Council data (2015). Refer to Appendix E. Future traffic volumes (AADT 24 hr volumes) for the year 2028 have been provided by the project's traffic consultant. The traffic volumes consider background growth in addition to traffic generated by the proposed development and the Sovereign Drive development upon completion. Traffic volumes for the 10 year planning horizon (year 2031) were calculated from the 2028 traffic volumes, assuming 5% growth per annum. Raynbird Road has one lane in each direction. Speed limit on Raynbird Road is 70km/h at the western section (375m west of Highlands Drive) and 60km/h at the eastern section of the development. Pavement surface type on Raynbird Road is dense graded asphalt. The CoRTN procedure requires traffic volume data input for 18 hours. Traffic volume for 18-hour period (6:00am to midnight) was considered as 94% of the 24 hour AADT. CoRTN Calibration Factors for Queensland Conditions were considered in this assessment, as per the procedure from the TMR CoP Vol. 15: Adjustment of -1.7dB was applied to the calculated façade traffic noise levels; and Adjustment of -0.7dB was applied to the calculated free-field traffic noise levels. Noise emission line for passenger vehicles (Austroads Class 1 and 2) is 0.5m above road surface. Noise emission line for heavy vehicles (Austroads Class 3 and up) engine noise is 1.5m above road surface. CoRTN correction factor of -0.8dB is applicable to the heavy vehicle engine noise source. Noise emission line for heavy vehicles (Austroads Class 3 and up) exhaust noise is 3.6m above road surface. CoRTN correction factor of -8.0dB is applicable to the heavy vehicle exhaust noise source.

⁴ 10 years after the development is established.

Client: Satterley Page 8

⁵ Source: Australian Road Research Board, 1982, An Evaluation of the UK DoE Traffic Noise Prediction (Report No. 122, ARRB -NAASRA Planning Group). Referenced in the TMR CoP Vol. 1.

Receivers	 Building Facades: Receivers were attached to the most exposed facades of each building at the proposed development. Receivers are placed at a height of 1.5m above each floor level (ground floor as well as potential upper floors). SoundPLAN adds +2.5dB(A) to the calculated noise levels when the receivers are attached to the buildings, thus the tabulated traffic noise levels are façade adjusted. Private Open Spaces: Receiver was placed at 1.5m above ground level within the backyard areas on the ground floor. 2.0m grid spacing was used for calculation of noise contour maps.
Noise Mitigation Measures	 The recommended noise mitigation measures are presented in Section 6 of this report. The allotments along Raynbird Road in Stage 12 (Lots 1266 to 1278) will be protected from traffic noise by noise barriers.

4.2 Road Noise Model Validation

The noise data collected during the monitoring period (as presented in Table 2.2) was used to validate the accuracy of the SoundPLAN model prior to undertaking calculations of the future road traffic noise levels.

Traffic flow data, as considered in the SoundPLAN validation model, is presented in Table 4.2.

Table 4.2 Traffic Flow Data for Validation

Road	2015 Traffic Flow	2017 Traffic Flow	2018 Traffic Flow	Heavy
	AADT ⁶	AADT ⁷	AADT	Vehicles (%)
Raynbird Road	1,530	1,687	1,771	17.2%

The results of the SoundPLAN model validation are presented in Table 4.3 and in Appendix F.

Table 4.3 SoundPLAN Validation Results

Measurement Location	Measured* L _{10,18hr} dB(A)	Calculated* L _{10,18hr} dB(A)	Difference dB	Validation Factor
Location 1	60	60	0	N/A
Location 2	65	65	0	N/A

*Free field

The calculated road traffic noise level is within the acceptable tolerance of ±2dB(A), thus there is no need for the addition of a validation factor to the road traffic noise levels within the planning horizon (year 2031).

Client: Satterley

Page 9

⁶ Traffic count site: ATC1 – Raynbird Road 150m West of Highlands Drive. Data provided by Moreton Bay Regional Council.

⁷ 2017 and 2018 traffic flows have been calculated from the 2015 traffic flows, with allowance for 5.0% growth per year.

4.3 Traffic Noise Calculation Model (Year 2031)

The road traffic noise calculations were carried out for a planning horizon of 2031. The projected traffic flow on Raynbird Road is presented in Table 4.4.

Table 4.4 Traffic Flow Data for 10 Year Planning Horizon

Road	Section	2031 Traffic Flow AADT	Heavy Vehicles (%)
	West of western site access road	5360	17.2%
Raynbird Road	Western site access road to Highland Drive	5013	17.2%
	Highlands Drive to eastern site access road	5591	17.2%
	Eastern site access road to Oakey Flat Road	9840	17.2%

Client: Satterley Page 10

Overview of the SoundPLAN model is presented in Figure 4.1 and Figure 4.2.

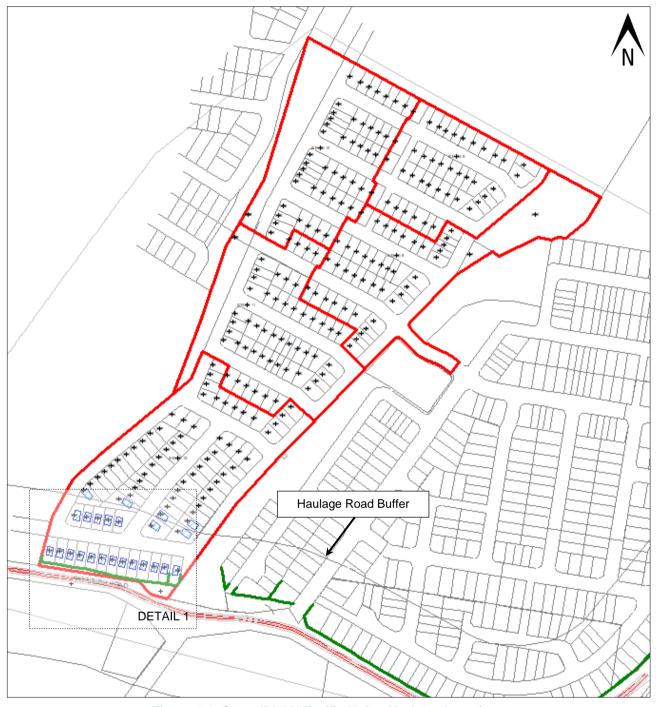


Figure 4.1 SoundPLAN Traffic Noise Model – Overview

Client: Satterley

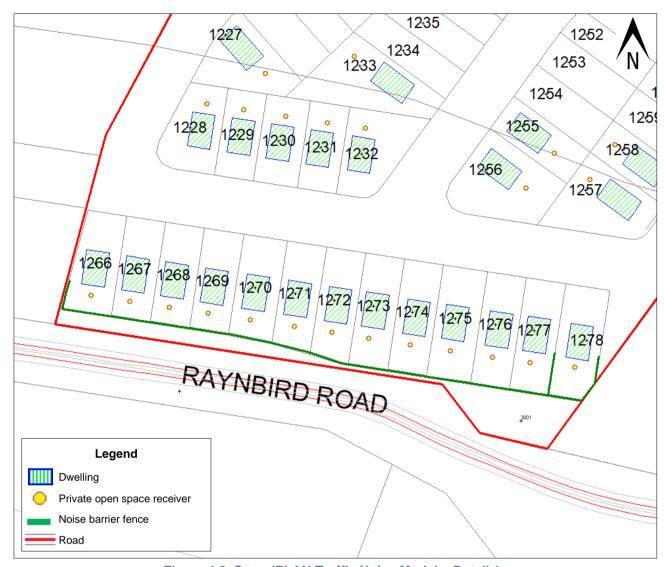


Figure 4.2 SoundPLAN Traffic Noise Model – Detail 1

The traffic noise model considers private open spaces at the locations shown in Figure 4.2, for assessment against the relevant noise criteria for private open spaces.

The finished pad levels of the allotments along Raynbird Road, as considered in the SoundPLAN model, are presented in Table 4.5.

Table 4.5 Finished Pad Levels of Allotments

Lot No.	Pad level, RL (AHD, m) Centre of lot
Lot 1266	72.00
Lot 1267	71.50
Lot 1268	71.70
Lot 1269	71.90
Lot 1270	71.50
Lot 1271	71.20

Client: Satterley

Lot No.	Pad level, RL (AHD, m) Centre of lot
	Centre of lot
Lot 1272	70.30
Lot 1273	69.30
Lot 1274	68.20
Lot 1275	66.80
Lot 1276	65.30
Lot 1277	64.30
Lot 1278	62.80

Client: Satterley

5. Calculated Traffic Noise Levels

5.1 Detached Dwellings

The highest calculated traffic noise levels at the proposed dwellings, with the recommended noise barrier fences in place, are presented in Table 5.1.

Table 5.1 Traffic Noise Levels at Building Facades - Year 2031

	Ground Floor		Upper	Floor
Lot No.	Calculated traffic noise level L _{10,18hr} dB(A)*	Noise Category QDC MP4.4	Calculated traffic noise level L _{10,18hr} dB(A)*	Noise Category QDC MP4.4
Lot 1227	43	Category 0	50	Category 0
Lot 1228	53	Category 0	55	Category 0
Lot 1229	53	Category 0	55	Category 0
Lot 1230	54	Category 0	56	Category 0
Lot 1231	54	Category 0	56	Category 0
Lot 1232	55	Category 0	56	Category 0
Lot 1233	51	Category 0	54	Category 0
Lot 1255	54	Category 0	56	Category 0
Lot 1256	56	Category 0	57	Category 0
Lot 1257	55	Category 0	57	Category 0
Lot 1258	54	Category 0	55	Category 0
Lot 1266	59	Category 1	65	Category 2
Lot 1267	58	Category 1	65	Category 2
Lot 1268	59	Category 1	65	Category 2
Lot 1269	59	Category 1	65	Category 2
Lot 1270	58	Category 1	64	Category 2
Lot 1271	59	Category 1	64	Category 2
Lot 1272	59	Category 1	63	Category 2
Lot 1273	59	Category 1	63	Category 2
Lot 1274	59	Category 1	63	Category 2
Lot 1275	58	Category 1	63	Category 2
Lot 1276	58	Category 1	62	Category 1
Lot 1277	59	Category 1	62	Category 1
Lot 1278	59	Category 1	62	Category 1

^{*}facade adjusted

5.2 Private Open Spaces

The calculated traffic noise levels at the private open spaces of the proposed dwellings, with the recommended noise barrier fences in place, are presented in Table 5.2.

Table 5.2 Traffic Noise Levels at Private Open Spaces - Year 2031

Lot No.	Calculated traffic noise level L _{10,18hr} dB(A)*	Compliance with ≤57dB(A) L _{10,18hr} criterion?
Lot 1227 POS	41	Yes
Lot 1228 POS	44	Yes
Lot 1229 POS	44	Yes

Client: Satterley Page 14

Lot No.	Calculated traffic noise level L _{10,18hr} dB(A)*	Compliance with ≤57dB(A) L _{10,18hr} criterion?
Lot 1230 POS	45	Yes
Lot 1231 POS	45	Yes
Lot 1232 POS	51	Yes
Lot 1233 POS	46	Yes
Lot 1255 POS	53	Yes
Lot 1256 POS	55	Yes
Lot 1257 POS	51	Yes
Lot 1258 POS	48	Yes
Lot 1266 POS	56	Yes
Lot 1267 POS	55	Yes
Lot 1268 POS	56	Yes
Lot 1269 POS	56	Yes
Lot 1270 POS	56	Yes
Lot 1271 POS	56	Yes
Lot 1272 POS	56	Yes
Lot 1273 POS	56	Yes
Lot 1274 POS	56	Yes
Lot 1275 POS	56	Yes
Lot 1276 POS	56	Yes
Lot 1277 POS	56	Yes
Lot 1278 POS	56	Yes

*free field

The noise levels at the private open spaces are within the criteria of 57dB(A) L_{10,18hr} (free-field) at all allotments, considering the proposed noise barriers and pad levels.

Full tabulated results of the calculated traffic noise levels are presented in Appendix G.

Noise contours showing the propagation of traffic noise across the development site are presented in Appendix H.

Client: Satterley

6. Discussion and Recommendations

Within a 10-year planning horizon, at the time of full establishment of the residential development, there is a potential for traffic noise impact on the future dwellings on the allotments nearest to Raynbird Road. In accordance with the adopted streetscape strategy for the development, it is proposed to construct noise barriers along Raynbird Road to protect the development from traffic noise impacts.

The recommended noise barriers are to be constructed along the southern boundary of Lots 1266 to 1278, and be of varying height, with the top of the noise barrier 2.0m to 3.8m above the finished surface level along the edge of the allotment.

The RLs at the base and top of the proposed noise barriers, as well as the pad levels of the allotments, are presented in Table 6.1.

Table 6.1 Proposed Noise Barrier RLs - Stage 12

x, m (Easting)	y, m (Northing)	Lot No.	Pad level, RL (AHD, m) Centre of lot	Base of noise barrier fence RL (AHD, m)	Noise barrier height, m	Top of noise barrier, RL (AHD, m)
Along property	boundary facing F	Raynbird Road				
491858.74	6993044.86	1266	72.00	72.18	2.40	74.58
491857.51	6993040.36	1266	72.00	72.00	2.40	74.40
491856.28	6993035.86	1266	72.00	71.92	2.40	74.32
491871.63	6993033.53	1266	72.00	71.43	2.40	73.83
491872.13	6993033.46	1267	71.50	71.37	2.40	73.77
491883.87	6993031.68	1267	71.50	71.20	2.40	73.60
491884.59	6993031.60	1268	71.70	71.20	2.40	73.60
491896.26	6993029.86	1268	71.70	71.19	2.40	73.59
491896.93	6993029.78	1269	71.90	71.18	2.40	73.58
491908.62	6993027.96	1269	71.90	72.00	2.40	74.40
491909.34	6993027.83	1270	71.50	71.92	2.40	74.32
491922.32	6993025.16	1270	71.50	71.22	2.40	73.62
491922.93	6993025.01	1271	71.20	71.16	2.40	73.56
491934.58	6993022.04	1271	71.20	71.00	2.40	73.40
491935.14	6993021.93	1272	70.30	71.09	2.80	73.89
491944.74	6993018.75	1272	70.30	70.34	2.80	73.14
491946.57	6993018.43	1272	70.30	70.07	2.80	72.87
491947.26	6993018.31	1273	69.30	70.00	2.80	72.80
491959.01	6993016.52	1273	69.30	69.50	2.80	72.30
491959.73	6993016.43	1274	68.20	68.49	3.60	72.09
491971.26	6993014.53	1274	68.20	68.02	3.60	71.62
491971.99	6993014.41	1275	66.80	67.00	3.80	70.80
491985.18	6993012.41	1275	66.80	66.51	3.80	70.31
491985.85	6993012.28	1276	65.30	66.24	3.80	70.04
491997.63	6993010.51	1276	65.30	65.74	3.80	69.54

Client: Satterley

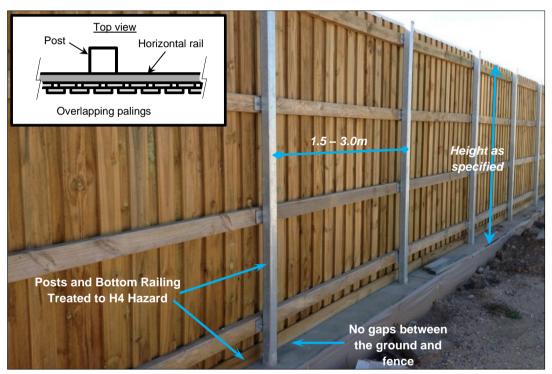
Page 17

x, m (Easting)	y, m (Northing)	Lot No.	Pad level, RL (AHD, m) Centre of lot	Base of noise barrier fence RL (AHD, m)	Noise barrier height, m	Top of noise barrier, RL (AHD, m)
491998.29	6993010.40	1277	64.30	64.72	3.80	68.52
492009.90	6993008.62	1277	64.30	64.06	3.80	67.86
492010.57	6993008.49	1278	62.80	63.00	3.60	66.60
492020.73	6993006.99	1278	62.80	62.51	3.60	66.11
492024.87	6993012.38	1278	62.80	62.50	2.80	65.30
492026.13	6993020.93	1278	62.80	62.50	2.40	64.90
Along property boundary between Lots 1227 and 1228						
492009.90	6993008.62	1277	64.30	64.06	2.00	66.06
492012.18	6993021.88	1277	64.30	64.00	2.00	66.00

Client: Satterley

The recommended alignment and RLs of the top of the noise barrier at Stage 12 (Lots 1266 to 1278) is presented in Figure 6.1.

Figure 6.1 Noise Barrier Alignment – Stage 12


Client: Satterley

Acceptable form of construction for the noise barrier is as follows:

- Material with minimum surface density of 12.5kg/m², e.g. timber palings with minimum thickness 22mm; compressed fibre-cement sheeting with minimum thickness of 9mm; masonry; and aerated concrete.
- The noise barrier should be free of any gaps. If the noise barrier is constructed of timber palings, planks should have minimum 35mm overlap.
- The noise barrier should be of durable construction.

Typical construction of a timber acoustic fence is illustrated in Figure 6.2.

Figure 6.2 Typical Timber Acoustic Fence

The primary objective of the recommended noise barriers is to provide an acceptable level of noise amenity at the private open spaces (backyards) and to protect the ground floors of the future dwellings.

The results of the traffic noise modelling indicate that, with the proposed noise barriers, the noise levels at the private open spaces are in compliance with the criteria of 57dB(A) L_{10,18hr} (free-field) at all allotments within a 10-year planning horizon.

However, the ground and upper floors of some allotments nearest to Raynbird Road will be exposed to residual traffic noise, although the traffic noise impact is relatively minor:

 At the ground floors, 13 allotments nearest to Raynbird Road will be subject to external façade traffic noise levels corresponding to QDC Noise Category 1.

Client: Satterley Page 19

• At the upper floors, 3 allotments will be subject to Noise Category 1; and 10 allotments will be subject to Noise Category 2.

There are two options available for architectural treatment to the building facades as follows:

- Option 1: Implementation of the 'acceptable forms of construction' specified in Queensland Development Code (QDC) Mandatory Part 4.4 (*Buildings in a Transport Noise Corridor*). The buildings should be constructed to comply with the Noise Categories presented in Table 6.1.
- **Option 2:** Floor plan specific acoustic design in accordance with AS3671-1989 to ensure compliance with the internal noise criteria from AS/NZS 2107:2016.

The acoustic requirements applicable to each dwelling are presented in Table 6.2.

Table 6.2 Acoustic Requirements for Building Construction

	Ground Floor	Upper Floor
Lot No.	Noise Category QDC MP4.4	Noise Category QDC MP4.4
Lot 1227	Category 0	Category 0
Lot 1228	Category 0	Category 0
Lot 1229	Category 0	Category 0
Lot 1230	Category 0	Category 0
Lot 1231	Category 0	Category 0
Lot 1232	Category 0	Category 0
Lot 1233	Category 0	Category 0
Lot 1255	Category 0	Category 0
Lot 1256	Category 0	Category 0
Lot 1257	Category 0	Category 0
Lot 1258	Category 0	Category 0
Lot 1266	Category 1	Category 2
Lot 1267	Category 1	Category 2
Lot 1268	Category 1	Category 2
Lot 1269	Category 1	Category 2
Lot 1270	Category 1	Category 2
Lot 1271	Category 1	Category 2
Lot 1272	Category 1	Category 2
Lot 1273	Category 1	Category 2
Lot 1274	Category 1	Category 2
Lot 1275	Category 1	Category 2
Lot 1276	Category 1	Category 1
Lot 1277	Category 1	Category 1
Lot 1278	Category 1	Category 1

Provided the recommended planning and design noise control measures are implemented in the construction of the residential development, the road traffic noise from Raynbird Road will not impose any further constraints on the establishment of the residential development.

Client: Satterley Page 20

7. Conclusions

Based on the results of the noise impact assessment for Stages 8 to 12 of the Ridgeview development at Raynbird Road at Narangba, the following is concluded:

- Within a 10-year planning horizon, there is a potential for traffic noise impact on the future dwellings on the allotments nearest to Raynbird Road.
- In accordance with the adopted streetscape strategy for Raynbird Road, it is recommended to construct noise barrier fences as per Figure 6.1 of this report.
- The primary objective of the recommended noise barriers is to provide an acceptable level
 of noise amenity at the private open spaces (backyards) and to protect the ground floors of
 the future dwellings.
- The ground and upper floors of some allotments nearest to Raynbird Road will be exposed to residual traffic noise. The dwellings must be built to comply with QDC MP4.4 Noise Categories listed in Table 6.2 of this report or, alternatively, be acoustically designed in accordance with AS3671-1989.

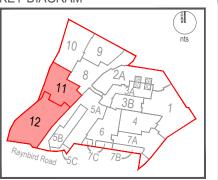
Provided the recommended planning and design noise control measures are implemented in the construction of the residential development, the road traffic noise from Raynbird Road will not impose any further constraints on the establishment of the development.

Client: Satterley Page 21

8. References

- Australian Standard AS 1055-2018 (Acoustics Description and Measurement of Environmental Noise)
- Australian Standard AS/NZS 2107:2016 (Acoustics Recommended design sound levels and reverberation times for building interiors)
- Australian Standard AS 2702-1984 (Acoustics Methods for the Measurement of Road Traffic Noise)
- Australian Standard AS 3671:1989 (Acoustics Road Traffic Noise Intrusion Building sitting and construction)
- Australian Standard AS/NZS IEC61672.1-2019 (Electroacoustics Sound level meters Specifications)
- Department of Transport and Main Roads, Development Affected by Environmental Emissions from Transport Policy, Version 4 (October 2017)
- Moreton Bay Regional Council, 2020, Planning Scheme Policy Noise
- Queensland Development Code (QDC), Mandatory Part 4.4 (Buildings in a Transport Noise Corridor)

Client: Satterley Page 22



Appendix A – Proposed Development

Client: Satterley

KEY DIAGRAM

CLIENT

PROJECT

Master Plan

Stages 11+12

Raynbird Road, Narangba

Αľ	MEN	DMENTS:	DATE:
	А	Original	27.04.2021
-	В	IR Changes	11.11.2021
	С	Increase 21m depth lots to 21.5m	24.11.2021
1	D	Amend lot 1278 + Stage Boundary	09.12.2021
-	Е	Amend lot 1278 + Stage Boundary	16.02.2022
	F	Add Road widening Lot 3001	06.05.2022
(G	Add Type A+B lots - Stage 11	24.05.2022
-	Н		
DE	ESIG	NED: KS	DATE: 24.05.2022
DF	RAW	N: KS	DATE: 24.05.2022
S	CALE	E: 1:4,000 @ A3	1 of 1

IMPORTANT NOTES:

This note is an integral part of this plan. This plan may not be reproduced without this note.

This plan was prepared for a Development Application. This plan should not be used for any other purposes.

This plan remains subject to, but not limited to, authority approval, detail design and final survey.

The total number of lots shown on this plan is approximate only.

No relevance should be placed on the information on this plan for any financial dealings involving the land.

Copyright © PEAK URBAN Pty Ltd (24.05.2022)

DRAWING NUMBER:

ISSUE:

18-0084-PS22

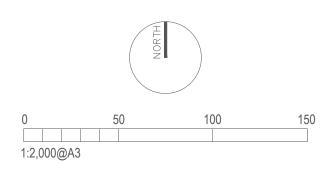
LEGEND

Site boundary	
Stage boundary	
Drainage reserve	
Approx. Road widening	

STAGING LOT SUMMARY

Stage 11	47
Stage 12	78
Total number of lots	125

DEVELOPMENT SUMMARY - LOTS

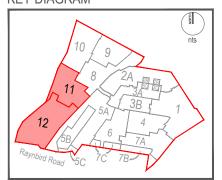

Total number of Residential lots	125
Total number of Drainage reserve lots	1
Total number of Road widening lots	1
Total number of lots	127

DENSITY

Total number of Residential lots	125
Approx. area (excluding lots 1099+ 3001)	7.0ha
Approx. Density	17.8du/ha

YIELD SUMMARY

MBRC Lot Type	Lot Frontage	Number of Lots	%
Type A	7.5m	2	1.6%
Туре В	>7.5m-10m	16	12.8%
Type C	>10m-12.5m	73	58.4%
Type D	>12.5m-18m	31	24.8%
Type E	>18.0m-32.0m	3	2.4%
Type F	32.0m+	0	0.0%
	Total	125	100%


3001

PALATIAL CRES 1009 1100 110

Stage 50

CLIENT

PROJEC

Plan of Subdivision

Stages 11+12

Raynbird Road, Narangba

AME	AMENDMENTS:		DATE:
Α	Origina	ıl	27.04.2021
В	IR Cha	nges	11.11.2021
С	Increas	se 21m depth lots to 21.5m	24.11.2021
D	Ameno	l lot 1278 + Stage Boundary	09.12.2021
Е	Ameno	l lot 1278 + Stage Boundary	16.02.2022
F	Add Ro	oad widening Lot 3001	06.05.2022
G	Add Ty	/pe A+B lots - Stage 11	24.05.2022
Н			
DESI	GNED:	KS	DATE: 24.05.2022
DRA	NN:	KS	DATE: 24.05.2022
SCAI	LE:	1:2,000 @ A3	1 of 1

IMPORTANT NOTES:

This note is an integral part of this plan. This plan may not be reproduced without this note.

This plan was prepared for a Development Application. This plan should not be used for any other purposes.

This plan remains subject to, but not limited to, authority approval, detail design and final survey.

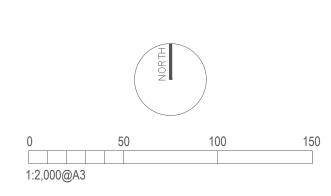
The total number of lots shown on this plan is approximate only.

No relevance should be placed on the information on this plan for any financial dealings involving the land.

Copyright © PEAK URBAN Pty Ltd (24.05.2022)

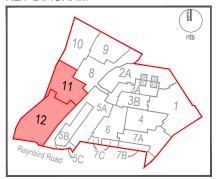
DRAWING NUMBER:

ISSUE:


18-0084-PS23

LEGEND

Site boundary	
Stage boundary	
Drainage reserve	
Approx. Road widening	


LEGEND - Setbacks

Lots with a frontage 12.5m or less	
Mandatory Built to Boundary Wall (BTB)	
Mandatory Driveway Location	←
Mandatory Paired Driveway Location	\$

KEY DIAGRAM

CLIENT

PROJEC

Plan of Development

Stages 11+12

Raynbird Road, Narangba

AMEN	DMENTS:	DATE:	
Α	Original	27.04.2021	
В	IR Changes	11.11.2021	
С	Increase 21m depth lots to 21.5m	24.11.2021	
D	Amend lot 1278 + Stage Boundary	09.12.2021	
Е	Amend lot 1278 + Stage Boundary	16.02.2022	
F	Add Road widening Lot 3001	06.05.2022	
G	Add Type A+B lots - Stage 11	24.05.2022	
Н			
DESIG	NED: KS	DATE: 24.05.2022	
DRAW	N: KS	DATE: 24.05.2022	
SCALI	E: 1:2,000 @ A3	1 of 1	

IMPORTANT NOTES:

This note is an integral part of this plan. This plan may not be reproduced without this note.

This plan was prepared for a Development Application. This plan should not be used for any other purposes.

This plan remains subject to, but not limited to, authority approval, detail design and final survey.

The total number of lots shown on this plan is approximate only.

No relevance should be placed on the information on this plan for any financial dealings involving the land.

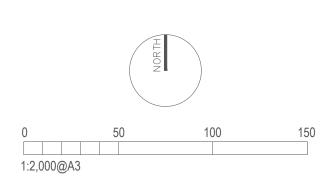
Copyright © PEAK URBAN Pty Ltd (24.05.2022)

DRAWING NUMBER:

ISSUE:

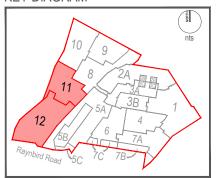
18-0084-PD11

LEGEND


Site boundary	
Stage boundary	
Drainage reserve	
Approx. Road widening	

LEGEND - Setbacks

Lots with a frontage 12.5m or less	
Mandatory Driveway Location	←
Possible On-street Car Parking	
Mandatory Paired Driveway Location	#


ON STREET PARKING PROVISION

Lots with frontages 12.5m or less (0.5 spaces per lot)	91
Lots with a frontages of greater than 12.5 metres (1.0 spaces per lot)	34
Total number of on street parking required	79.5
Total number of on street parking shown on plan	80

KEY DIAGRAM

CLIE

PROJEC

On-street Parking Plan

Stages 11+12

Raynbird Road, Narangba

AMEN	DMENTS:	DATE:			
А	Original	27.04.2021			
В	IR Changes	11.11.2021			
С	Increase 21m depth lots to 21.5m	24.11.2021			
D	Amend lot 1278 + Stage Boundary	09.12.2021			
Е	Amend lot 1278 + Stage Boundary	16.02.2022			
F	Add Road widening Lot 3001	06.05.2022			
G	Add Type A+B lots - Stage 11	24.05.2022			
Н					
DESIG	SNED: KS	DATE: 24.05.2022			
DRAW	/N: KS	DATE: 24.05.2022			
SCALI	E: 1:2,000 @ A3	1 of 1			

IMPORTANT NOTES:

This note is an integral part of this plan. This plan may not be reproduced without this note.

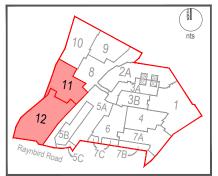
This plan was prepared for a Development Application. This plan should not be used for any other purposes. $\begin{tabular}{ll} \hline \end{tabular}$

This plan remains subject to, but not limited to, authority approval, detail design and final survey.

The total number of lots shown on this plan is approximate only.

No relevance should be placed on the information on this plan for any financial dealings involving the land.

Copyright © PEAK URBAN Pty Ltd (24.05.2022)


DRAWING NUMBER:

ISSUE:

18-0084-PG5

KEY DIAGRAM

PROJECT
Path Hierarchy Plan

Stages 11+12

Raynbird Road, Narangba

AMEN	DMENTS:	DATE:			
А	Original	27.04.2021 11.11.2021 24.11.2021			
В	IR Changes				
С	Increase 21m depth lots to 21.5m				
D	Amend lot 1278 + Stage Boundary	09.12.2021			
Е	Amend lot 1278 + Stage Boundary	16.02.2022			
F	Add Road widening Lot 3001	06.05.2022			
G	Add Type A+B lots - Stage 11	24.05.2022			
Н					
DESIG	SNED: KS	DATE: 24.05.2022			
DRAW	/N: KS	DATE: 24.05.2022			
SCALI	E: 1:2,000 @ A3	1 of 1			

IMPORTANT NOTES:

This note is an integral part of this plan. This plan may not be reproduced without this note.

This plan was prepared for a Development Application. This plan should not be used for any other purposes.

This plan remains subject to, but not limited to, authority approval, detail design and final survey.

The total number of lots shown on this plan is approximate only.

No relevance should be placed on the information on this plan for any financial dealings involving the land.

Copyright © PEAK URBAN Pty Ltd (24.05.2022)

DRAWING NUMBER:

ISSUE:

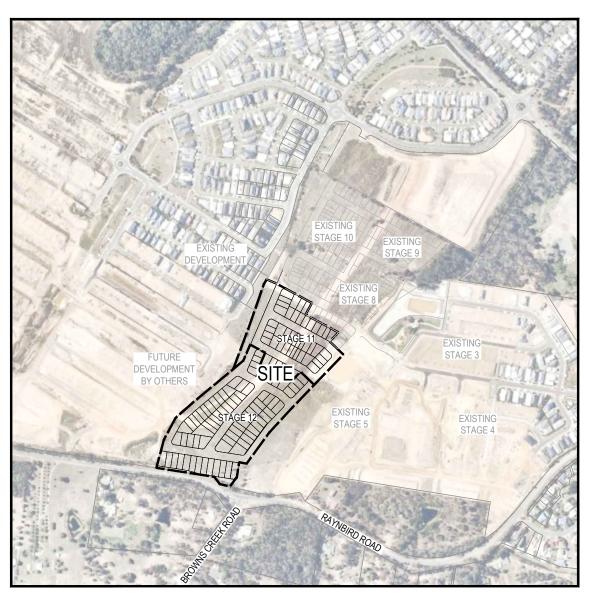
18-0084-PG6

PROPOSED RESIDENTIAL DEVELOPMENT

RIDGEVIEW - STAGES 11-12 ROL RAYNBIRD ROAD, NARANGBA FOR 'SATTERLEY PROPERTY GROUP PTY LTD'

DRAWING LIST

20-0192-P2000 COVER PLAN


EARTHWORKS, ROADWORKS AND DRAINAGE 20-0192-P2001 OVERALL LAYOUT PLAN

20-0192-P2002 CONCEPT BULK EARTHWORKS LAYOUT SHEET 1 OF 2
20-0192-P2003 CONCEPT BULK EARTHWORKS LAYOUT SHEET 2 OF 2
20-0192-P2004 CONCEPT BULK EARTHWORKS OVERALL SITE SECTIONS
20-0192-P2005 CONCEPT BULK EARTHWORKS SECTIONS
20-0192-P2006 CONCEPT ROADWORKS AND DRAINAGE LAYOUT SHEET 1 OF 2

20-0192-P2007 CONCEPT ROADWORKS AND DRAINAGE LAYOUT SHEET 2 OF 2

SEWERAGE AND WATER RETICULATION

20-0192-P2008 CONCEPT WATER AND SEWERAGE LAYOUT SHEET 1 OF 2 20-0192-P2009 CONCEPT WATER AND SEWERAGE LAYOUT SHEET 2 OF 2

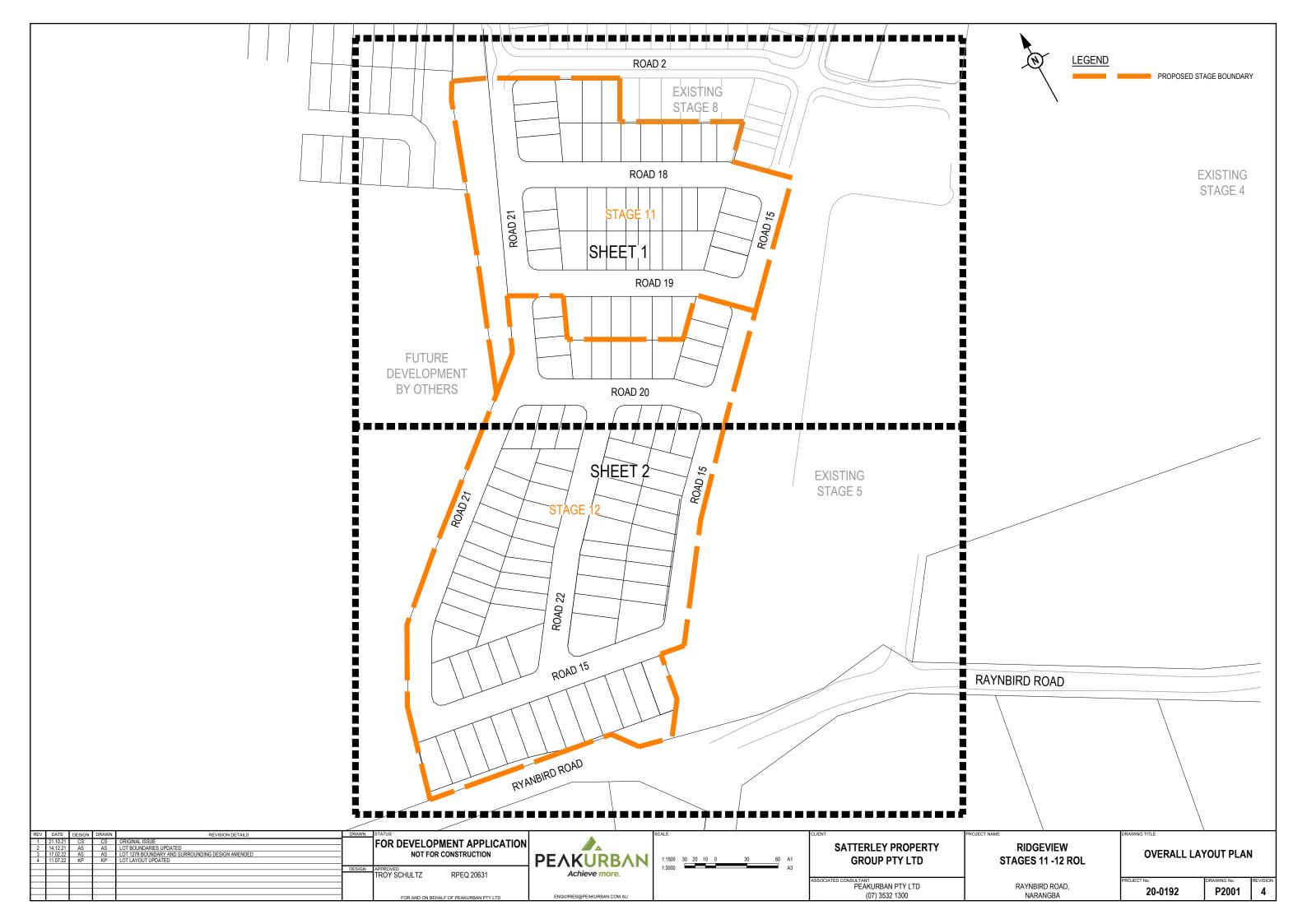
PROJECT INFORMATION SUMMARY

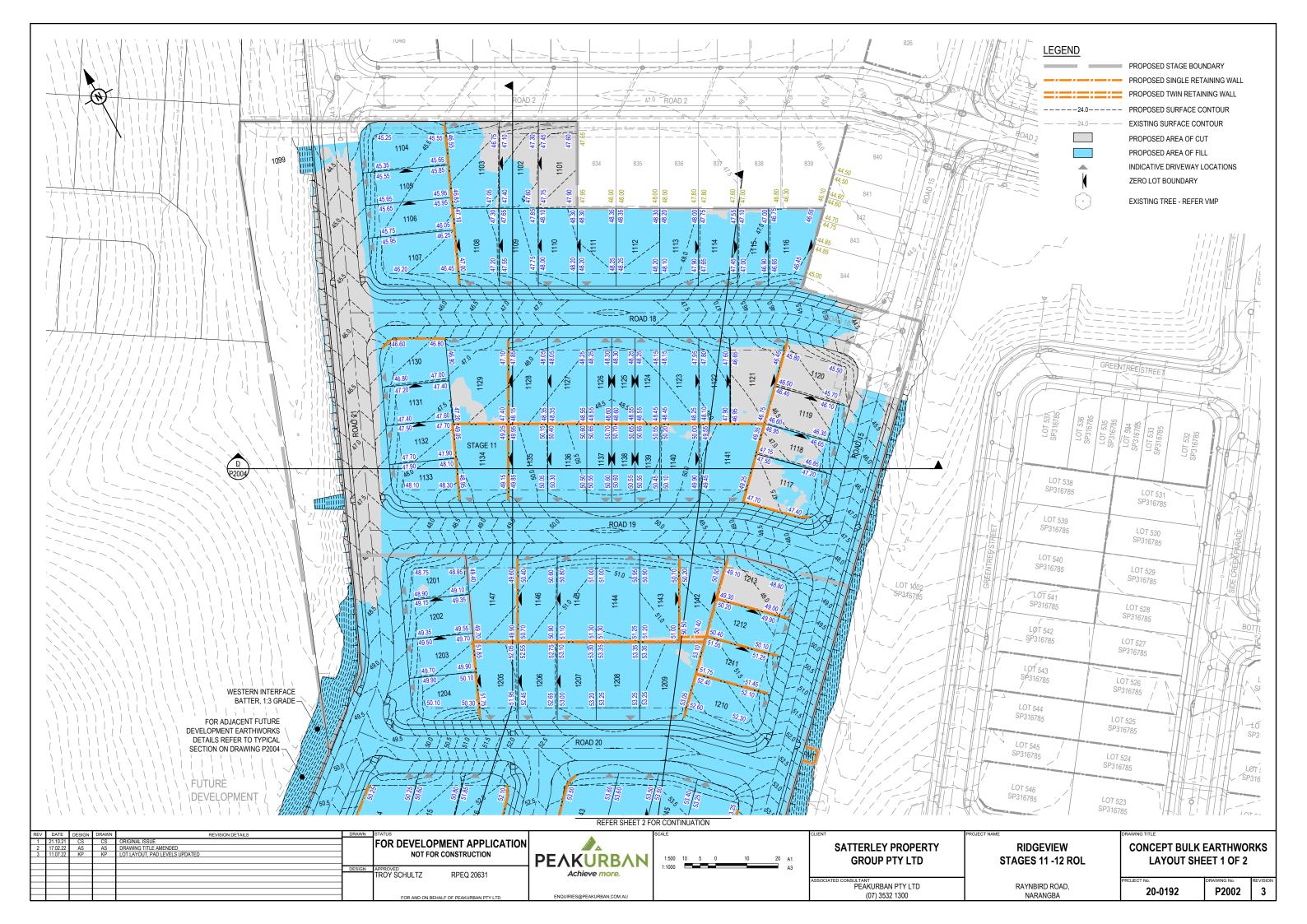
No. OF LOTS = 127

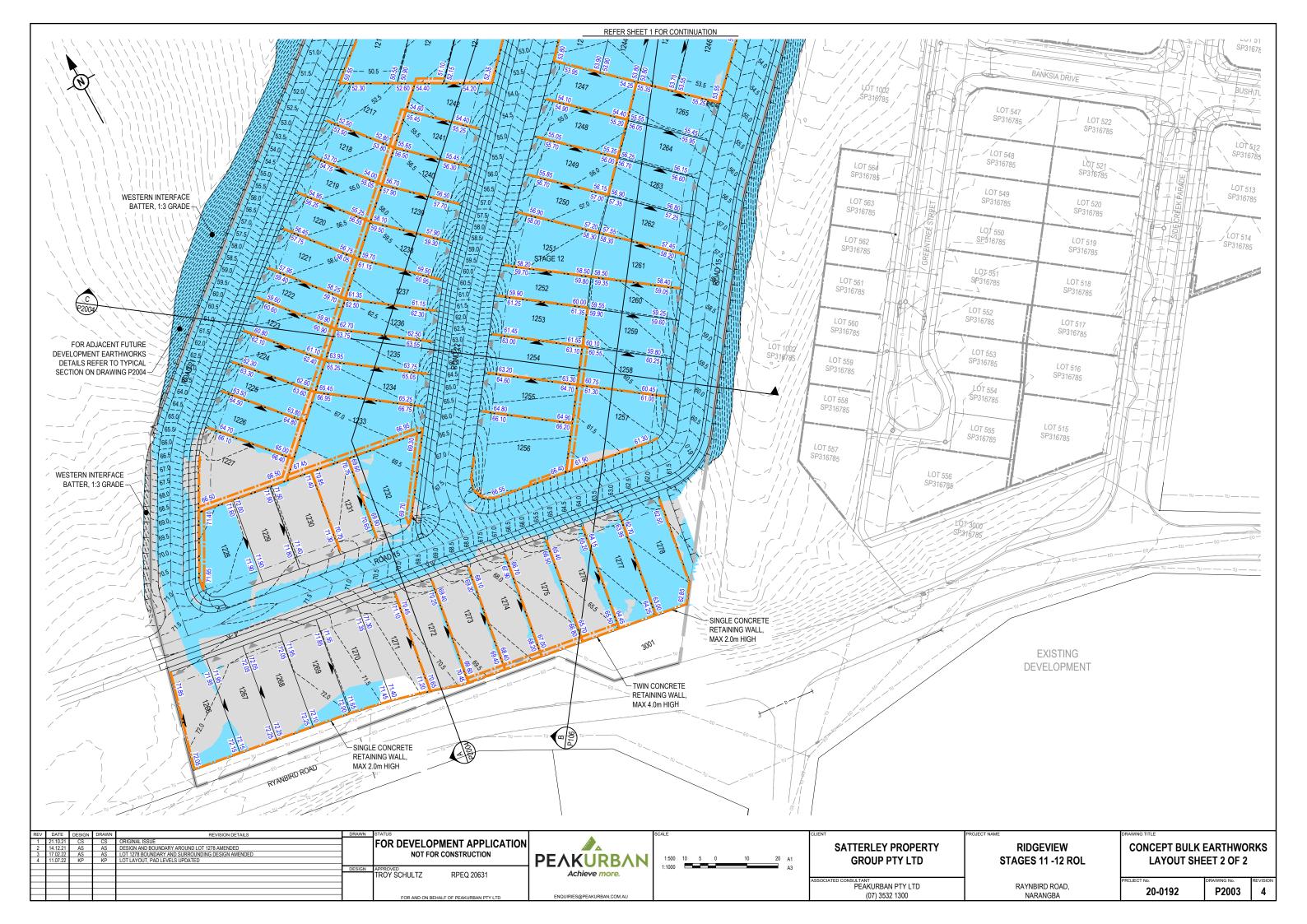
AREA OF SITE = 15.13 ha

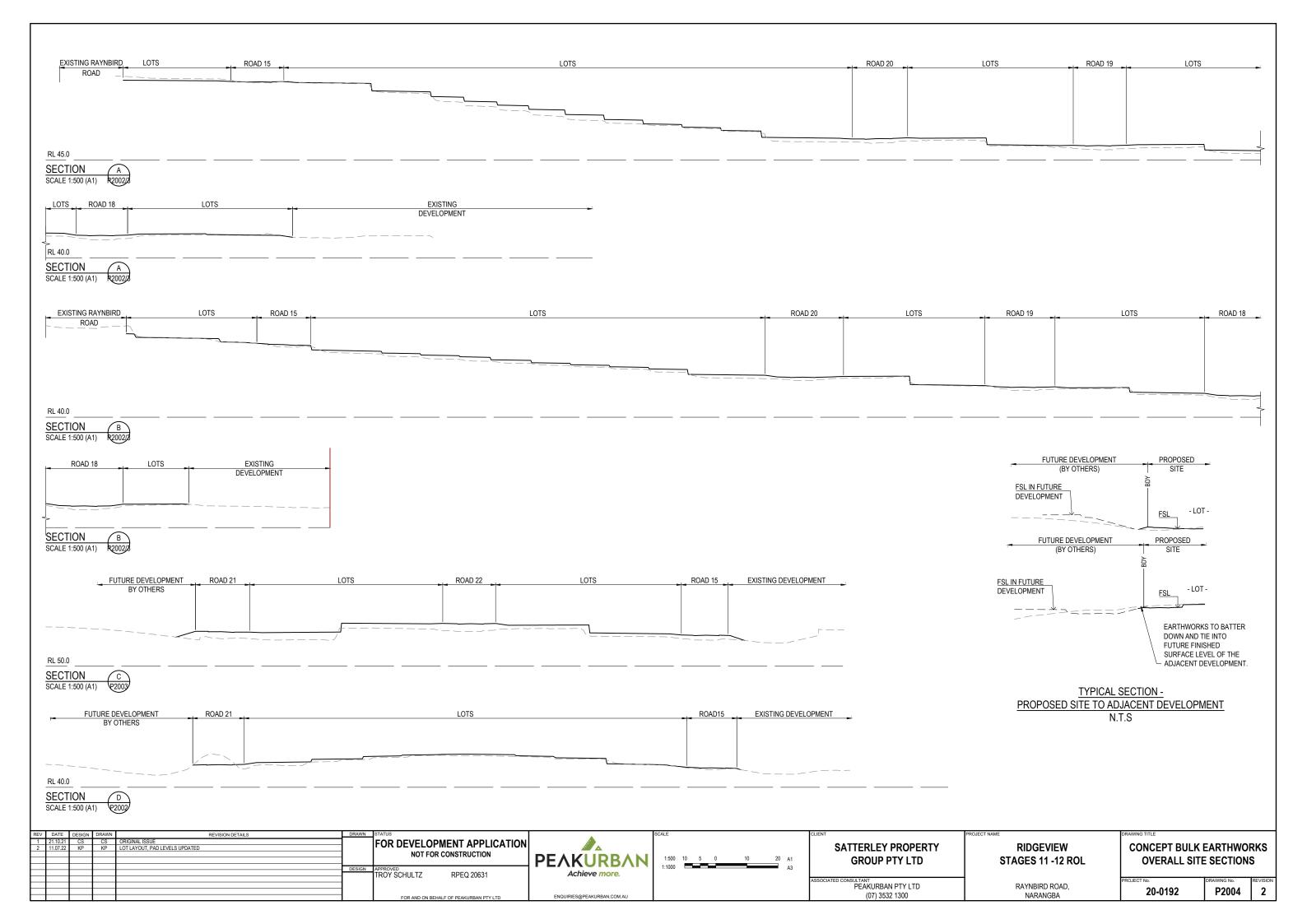
RP DESCRIPTION
LOT 3003 ON SP316783

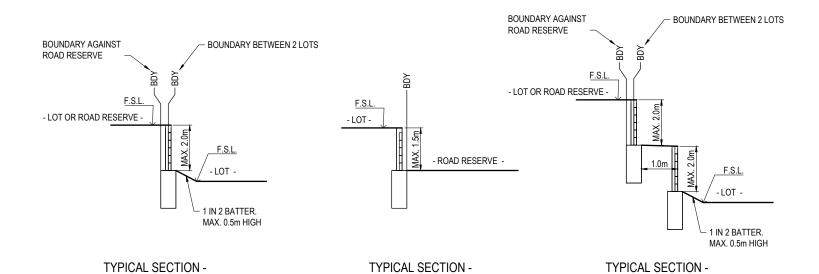
DATUM LEVEL AND LOCATION

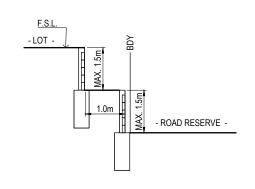

RL 47.028 AHD


LOCAL AUTHORITY:
MORETON BAY REGIONAL COUNCIL


COUNCIL REFERENCE NUMBER: DA/2021/1926


LOCALITY PLAN SCALE 1:4000 (A1)

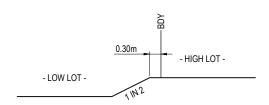

REV	DATE DES	ESIGN [DRAWN	REVISION DETAILS	DRAWN	STATUS		SCALE	CLIENT	PROJECT NAME	DRAWING TITLE		
1 2°	.10.21 C	CS AS	CS AS	ORIGINAL ISSUE DRAWING LIST AMENDED, LOT BOUNDARY AMENDED	}	FOR DEVELOPMENT APPLICATION	DN PFAKURBAN 1:4000 40 0 40		SATTERLEY PROPERTY GROUP PTY LTD	RIDGEVIEW STAGES 11 -12 ROL	COVER PLAN		
3 1	.07.22 F	KP	KP	LOT LAYOUT UPDATED	1	NOT FOR CONSTRUCTION		1:4000 40 0 40 80 120 160 200 A1					
					DESIGN	APPROVED TROY SCHULTZ RPEQ 20631	Achieve more.	1:8000 A3					
					1	11(01 30110E12 1(1 EQ 20031	TIOLIZ RELUZIOSTI PROMIETO MOTO.		ASSOCIATED CONSULTANT PEAKURBAN PTY LTD	RAYNBIRD ROAD,	PROJECT No.	DRAWING No.	REVISION
						FOR AND ON BEHALE OF PEAKURBAN PTY LTD	ENQUIRIES@PEAKURBAN.COM.AU		(07) 3532 1300	NARANGBA	20-0192	P2000	3

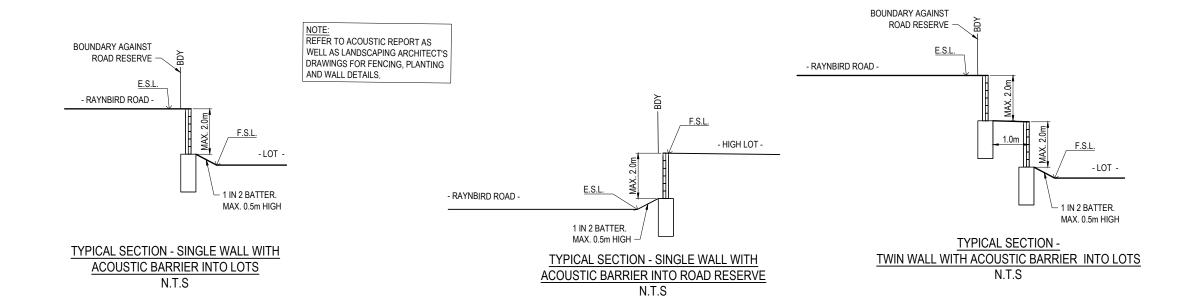


SINGLE WALL INTO ROAD RESERVE

N.T.S

SINGLE WALL INTO LOTS

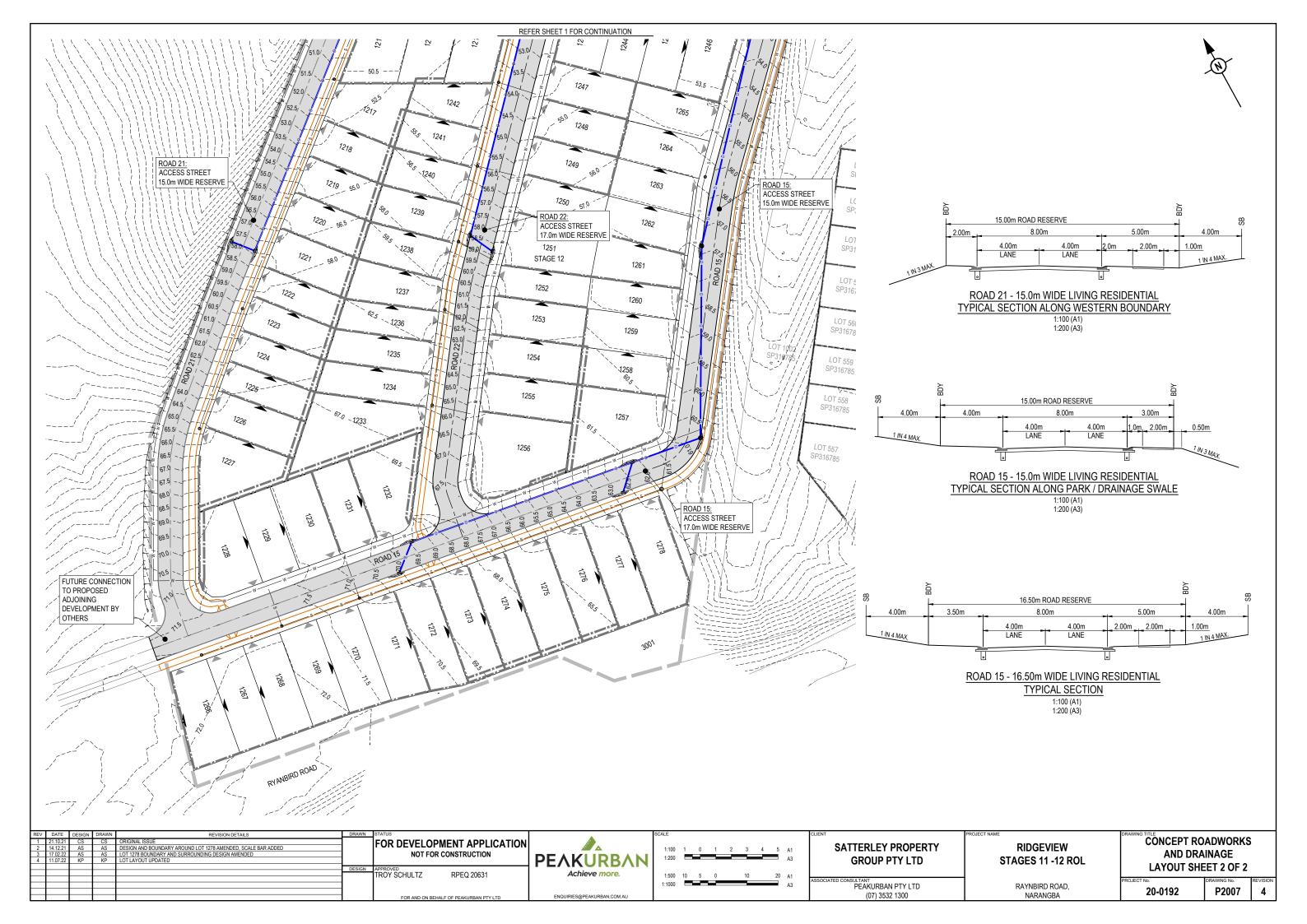

N.T.S


TYPICAL SECTION TWO TIER WALL INTO ROAD RESERVE
N.T.S

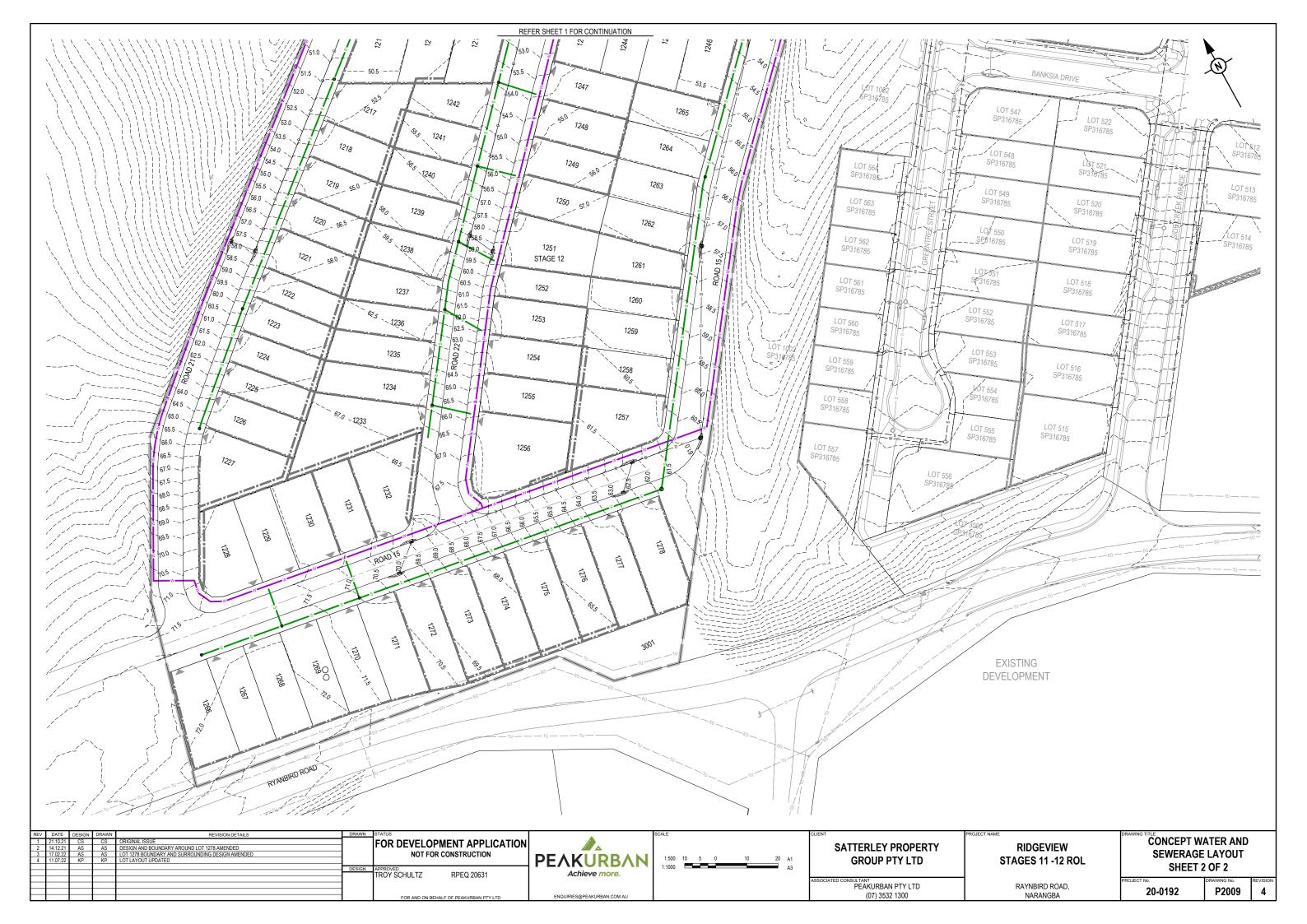
RETAINING WALL NOTES:

- ALL RETAINING WALLS ARE TO BE STRUCTURALLY DESIGNED AND CERTIFIED. FORMS 15 AND 16 ARE TO BE PROVIDED.
- DESIGN OF WALLS TO CONSIDER ALL LOADS (FENCES, DWELLINGS ETC) AND ASSOCIATED IMPACTS FROM ANY ADJACENT SERVICES FOOTING DEPTHS TO BE EXTENDED AS REQUIRED.
- 3. GEOTECHNICAL CONDITIONS ARE TO BE CONFIRMED AND APPROPRIATELY CONSIDERED FOR ALL WALLS.
- 4. REFER LANDSCAPE DRAWINGS FOR FURTHER INFORMATION ON RETAINING WALLS, PARTICULARLY RELATING TO FINISHES.
- 5. TEMPORARY SAFETY FENCING TO BE INSTALLED BEHIND ALL WALLS 1.0m HIGH AND GREATER.
- 6. WALLS TO BE DESIGNED TO ACCOMMODATE A SURCHARGE SUITABLE FOR A RESIDENTIAL HOUSE IMMEDIATELY BEHIND THE WALL. REFER TYPICAL DETAIL.

TYPICAL STEP BETWEEN LOTS DETAIL



TWO TIER WALL INTO LOTS


N.T.S

	21.10.21 11.07.22	CS KP	CS ORIGINAL ISSUE KP TYPICAL SECTIONS WITH ACOUSTIC BARRIERS UPDATED		FOR DEVELOPMENT APPLICATION NOT FOR CONSTRUCTION	PEAKURBAN		RIDGEVIEW AGES 11 -12 ROL	CONCEPT BULK		RKS
-		1		DESIGN	APPROVED TROY SCHULTZ RPEQ 20631	Achieve more.		ļ			
E					INOT SCHOLIZ IN EQ 20001			RAYNBIRD ROAD,	PROJECT №. 20-0192	P2005	REVISION
L					FOR AND ON BEHALF OF PEAKURBAN PTY LTD	ENQUIRIES@PEAKURBAN.COM.AU	(07) 3532 1300	NARANGBA	20-0132	F2003	

Appendix B – Site Photos

Client: Satterley

Photo 1: Noise monitoring location 1

Photo 2: Noise monitoring location 1

Client: Satterley

Photo 3: Noise monitoring location 2

Photo 4: Noise monitoring location 2

Client: Satterley

Appendix C – Meteorological Data

Client: Satterley

Redcliffe, Queensland **September 2017 Daily Weather Observations**

Most observations from Talobilla Park, but wind from Redcliffe Jetty.

Bureau of Meteorology

		Tem	ps	Rain	Evap	Sun	Max	x wind g	ust			9a	am			3pm					
Date	Day	Min	Max	Naiii	Evap	Suii	Dirn	Spd	Time	Temp	RH	Cld	Dirn	Spd	MSLP	Temp	RH	Cld	Dirn	Spd	MSLP
	_	°C	°C	mm	mm	hours		km/h	local	°C	%	eighths		km/h	hPa	°C	%	eighths	_	km/h	hPa
1	Fr	11.8	20.7	0						18.3	51		S	15	1024.0	19.9	44		E	19	1019.1
2	Sa	13.5	22.6	0			NE	26	16:06	19.1	49		S	13	1023.3	20.8	53		NE	19	1018.6
3	Su	13.3	25.2	0			N	44	16:58	20.4	63		NW	11	1020.8	23.3	57		NE	28	1014.7
4	Мо	18.1	29.7	0			N	48	15:36	21.8	63		NNE	17	1014.8	23.4	65		NNE	31	1009.3
5	Tu	15.6	27.8	0			NNE	39	16:45	22.3	21		SW	17	1016.6	27.3	13		NW	22	1012.4
6	We	12.9	26.5	0						19.9	23		WSW	35	1018.3	25.6	14		W	20	1014.5
7	Th	14.0	26.2	0						20.5	28		SW	11	1021.0	24.4	26		ENE	15	1016.7
8	Fr	10.4	26.1	0						19.9	28		WSW	19	1020.5	25.7	14		WSW	28	1015.3
9	Sa	10.6	23.3	0						19.5	27		SSW	20	1021.3	20.6	38		ESE	28	1018.5
10	Su	12.2	22.5	0						19.3	45		S	13	1023.4	20.9	51		NE	22	1019.4
11	Мо	12.5	24.5	0						20.0	58		SE	9	1021.9	22.4	60		NNE	33	1017.0
12	Tu	15.0	25.9	0			NNE	37	17:24	20.7	68		N	17	1019.6	23.0	67		NNE	31	1015.3
13	We	18.0	25.9	0			NNE	56	16:22	22.1	61		NNE	17	1016.3	24.1	63		NNE	39	1010.5
14	Th	20.0	23.2	0						20.2	43		WSW	24	1012.5	21.6	23		WSW	35	1012.5
15	Fr	8.7	21.4	0						17.4	28		SSW	13	1023.3	20.5	29		ENE	22	1019.8
16	Sa	9.4	24.7	0						20.5	35		Е	6	1023.6	22.3	53		NE	35	1018.0
17	Su	13.2	23.0	0						20.9	58		SSE	30	1024.6	21.3	56		ESE	30	1022.8
18	Мо	17.7	23.3	0			NE	33	18:02	20.8	53		SSE	9	1027.6	21.3	49		NE	20	1022.9
19	Tu	12.5	25.5	0						20.2	56		NW	7	1022.3	23.8	59		NE	31	1016.3
20	We	16.2	23.3	0			SE	48	04:54	21.8	55		SSE	26	1019.4	22.0	60		ESE	30	1015.3
21	Th	16.4	24.2	0			NNE	37	15:52	22.2	60		SE	6	1019.9	22.8	60		NNE	28	1015.8
22	Fr	19.5	26.4	0			N	59	19:04	23.7	63		NNE	22	1019.1	23.1	71		NNE	37	1014.6
23	Sa	16.8	27.4	1.4	1		NNE	43	16:11	22.1	63		NNE	17	1017.3	25.1	61		NNE	31	1011.9
24	Su	19.8	28.4	0			NNE	56	15:06	23.6	60		N	20	1013.9	25.2	63		NNE	43	1008.6
25	Мо	20.5	28.5	0			N	56	15:19	24.8	55		NNE	15	1014.1	26.3	61		N	41	1009.1
26	Tu	19.1	27.1	0			SSE	39	13:11	25.3	62		ENE	9	1014.1	23.5	61		SE	24	1013.1
27	We	19.9	24.8	0			SSE	37	00:15	22.0	65		E	15	1018.5	22.4	77		ESE	20	1014.4
28	Th	20.4	30.0	0			N	44	15:42	24.5	62		N	22	1013.3	28.1	56		N	31	1007.5
29	Fr	20.2	33.7	0			NE	33	14:36	29.7	30		SE	11	1015.4	30.8	31		NE	30	1011.0
30	Sa	18.6	33.2	0			ESE	43	15:17	29.1	23		S	22	1015.1	30.1	25		ENE	15	1011.6
Statistic						ı	1			1	. 1	1	ı						, ,		
	Mean	15.6	25.8							21.8	48			16	1019.2	23.7	48			27	1014.9
	Lowest	8.7	20.7							17.4	21		#	6	1012.5	19.9	13		ENE	15	1007.5
	Highest	20.5	33.7	1.4			N	59		29.7	68		WSW	35	1027.6	30.8	77		NNE	43	1022.9
	Total			1.4																	

Redcliffe, Queensland October 2017 Daily Weather Observations

Most observations from Talobilla Park, but wind from Redcliffe Jetty.

Australian Government

Bureau of Meteorology

		Ten	nps	Rain	Evap	Sun	Max	k wind g	ust			98	am					3p	om		
Date	Day	Min	Max	Kalli	⊏vap	Sun	Dirn	Spd	Time	Temp	RH	Cld	Dirn	Spd	MSLP	Temp	RH	Cld	Dirn	Spd	MSLP
		°C	°C	mm	mm	hours		km/h	local	°C	%	eighths		km/h	hPa	°C	%	eighths		km/h	hPa
1	Su	19.5	23.7	0			SSE	48	17:09	23.2	43		SE	24	1020.6	21.4	68		SSE	33	1019.4
2	Мо	17.0	22.2	3.4			ENE	46	23:00	21.0	67		ENE	26	1023.4	19.9	79		ENE	31	1020.4
3	Tu	16.2	23.6	36.0			SE	37	03:10	18.3	93		SW	13	1022.4	22.9	76		ENE	17	1018.7
4	We	18.2	24.5	10.0			ESE	31	14:30	22.3	74		SSE	15	1020.3	23.6	75		E	26	1016.8
5	Th	19.7	26.6	0			NNE	35	17:57	23.7	64		SSE	15	1019.5	24.9	67		ESE	19	1015.2
6	Fr	19.3	28.4	0			NNE	41	15:24	24.4	69		NE	13	1016.5	27.3	64		NNE	30	1011.8
7	Sa	20.4	23.2	0			SSE	54	02:18	22.0	64		SSE	35	1020.5	22.0	63		SSE	26	1019.1
8	Su	18.2	24.7	0			NNE	30	16:29	22.6	65		SE	7	1021.1	23.4	64		NE	19	1016.9
9	Мо	20.2	29.0	0			NE	37	14:13	23.3	73		NNW	9	1015.5	25.6	70		NE	31	1010.0
10	Tu	21.0	31.5	0.2			ESE	37	14:40	29.0	60		SE	13	1013.5	25.5	77		ESE	28	1012.2
11	We	22.7		0						24.3	78		SSE	11	1018.1					İ	
Statistic	s for the	first 11	days of	Octobe	r 2017									•							
	Mean	19.3	25.7							23.1	68			16	1019.2	23.6	70			26	1016.0
	Lowest	16.2	22.2							18.3	43		SE	7	1013.5	19.9	63		ENE	17	1010.0
	Highest	22.7	31.5	36.0			SSE	54		29.0	93		SSE	35	1023.4	27.3	79		SSE	33	1020.4
	Total			49.6																	

Redcliffe, Queensland May 2018 Daily Weather Observations

Most observations from Talobilla Park, but wind from Redcliffe Jetty.

Australian Government

Bureau of Meteorology

		Ten	nps	Dain	Evan	Sun	Max	wind g	ust			9a	am					3	om		
Date	Day	Min	Max	Rain	Evap	Sun	Dirn	Spd	Time	Temp	RH	Cld	Dirn	Spd	MSLP	Temp	RH	Cld	Dirn	Spd	MSLP
		°C	°C	mm	mm	hours		km/h	local	°C	%	eighths		km/h	hPa	°C	%	eighths		km/h	hPa
1	Tu	15.3	24.3	I			SE	46	14:27	21.2	57		SSW	17	1024.0		55		SSE	35	1021.8
2	We	17.0	25.2	!			SSE	35	01:53	21.5	66		SSW	19	1023.2	23.3	57		SSE	28	1019.7
3	Th	16.6	26.1	0			SSW	22	05:01	22.4	64		S	17	1021.5		59		E E	11	1018.2
4	Fr	17.1	26.4	0			NE	30	15:18	22.6	67		W	9	1021.0		61		NE	22	1017.3
5	Sa	18.2	25.8				SSE	57	17:21	23.5	67		S	17	1023.6	l .	59		SSE	43	1022.8
6	Su	16.5	25.2	0			SSE	50	14:14	21.6	56		SSW	24	1027.4	23.5	53		SSE	41	1024.5
7	Мо	18.2	24.4	I			SE	39	00:01	23.5	56		SE	30	1024.6		63		SE	30	1020.9
8	Tu	18.3	22.8	24.2			SE	41	14:12	20.2	92		S	17	1021.4	20.4	85		SSE	28	1018.7
9	We	17.8	26.3	ı	Į.		SSW	31	02:57	21.1	72		SW	15	1019.7	24.5	60		ENE	11	1015.9
10	Th	15.0	27.4	ı			NNW	33	23:21	20.8	74		SSE	9	1018.3		33		NNE	13	1012.9
11	Fr	16.7	22.8	!			WSW	50	09:17	18.9	39		WSW	28	1015.1	22.1	24		W	22	1012.7
12	Sa	11.5	22.1	0						16.0	40		WNW	15	1016.0		29		W	19	1012.2
13	Su	12.2	23.5							17.6	51		W	15	1018.0		34		SE	11	1015.1
14	Мо	11.5	23.6	!						19.5	52		S	11	1020.8		49		E	11	1017.6
15	Tu	13.1	23.4	0						19.0	57		SSW	17	1021.0		48		E	15	1018.6
16	We	12.9	23.0	0						18.8	61		SSW	20	1023.4	21.5	48		SE	30	1021.0
17	Th	14.0	22.3	0						19.2	59		S	20	1023.9	20.4	68		SSE	33	1021.4
18	Fr	15.1	22.6	!	Į.		SSW	24	06:39	19.7	62		SSW	13	1022.7	21.4	59		ENE	9	1019.4
19	Sa	12.0	23.1	0						17.9	69		S	11	1022.1	21.8	42		ESE	9	1019.5
20	Su	12.1	25.3	I						19.1	68		Е	6	1021.7	24.8	26		NNW	17	1017.6
21	Мо	10.5	23.6	I	Į.					17.9	45		SW	13	1021.4	22.3	42		E	6	1018.3
22	Tu	11.4	24.3	ı						18.0	41		W	11	1021.5	23.5	33		ENE	15	1016.9
23	We	12.3	23.9	l						19.7	50		SW	15	1022.7	22.0	56		SE	31	1021.2
24	Th	14.2	23.3	0			S	26	09:56	19.3	67		SSW	15	1023.9	21.5	57		SE	19	1020.3
25	Fr	15.0	22.9	0			SSE	50	19:16	19.4	65		SSW	17	1024.2	21.8	60		SE	22	1022.3
26	Sa	15.9	22.8	0			SSE	52	21:51	19.6	57		SSW	22	1027.1	19.1	71		S	33	1025.0
27	Su	15.2	21.4	0.2			SE	41	10:22	19.2	67		S	28	1026.5	20.9	68		S	19	1023.4
28	Мо	15.3	22.1	8.8	1		SE	41	16:04	17.7	83		SSW	20	1024.6		77		SSE	31	1021.8
29	Tu	15.7	22.3	l			SSE	35	00:02	17.8	84		SW	17	1022.2		65		E	6	1019.0
30	We	13.1	24.5	I			WSW	37	22:05	17.8	79		SSW	6	1020.1	23.2	60		NE	15	1015.7
31	Th	10.1	21.2	0						13.7	46		W	17	1021.1	20.9	26		W	15	1017.2
Statistic		-																			
	Mean	14.5	23.8							19.5	61			16	1022.1	22.3	52		_	20	1019.0
	Lowest	10.1	21.2				60-			13.7	39		#	6	1015.1	19.1	24		E	6	1012.2
	Highest	18.3	27.4	24.2			SSE	57		23.5	92		SE	30	1027.4	26.9	85		SSE	43	1025.0
	Total			50.4																	

Observations were drawn from Redcliffe {station 040958}

This Automatic Weather Station (AWS) is located in Talobilla Park, and sources its wind measurements from an anemometer on Redcliffe jetty.

IDCJDW4099.201805 Prepared at 13:02 UTC on 2 Jun 2018 Copyright © 2018 Bureau of Meteorology

Appendix D – Noise Monitoring Results

Client: Satterley

Unattended Noise Measurements Location 1

Traffic Noise Levels

Logger Location 1 - Raynbird Road, 75m west of Browns Creek Road 13m setback from edge of Raynbird Road

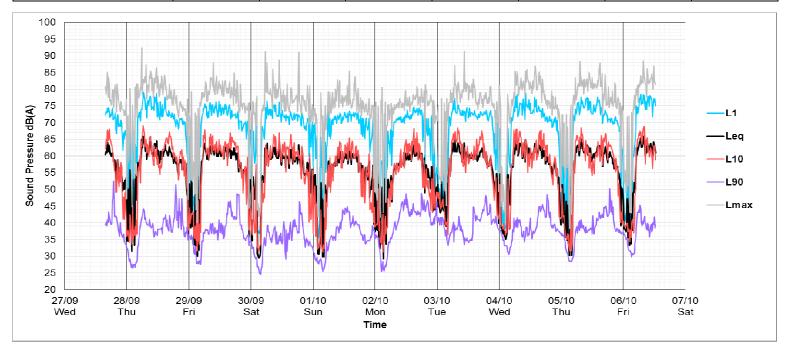
ARL Environmental Noise Logger

Logger Serial Number 8780d2

Measurement Title 20170927_152123

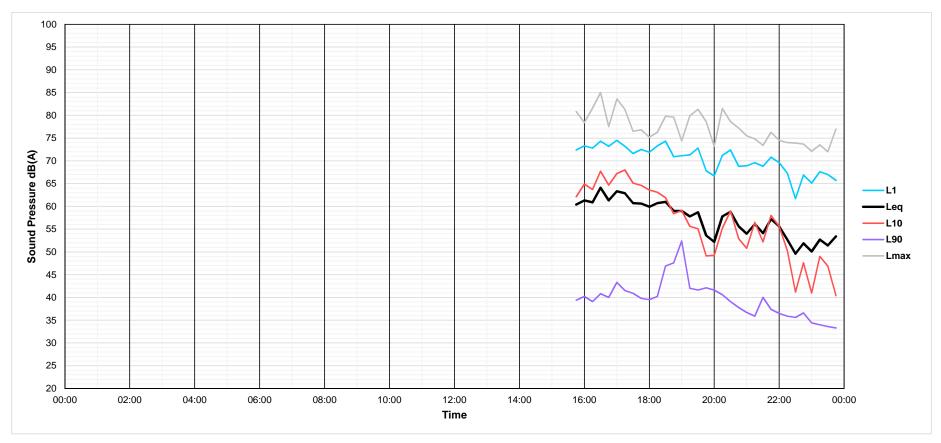
Measurement started at 27/09/2017 - 15:21:25

Measurement stopped at 06/10/2017 - 15:29:20

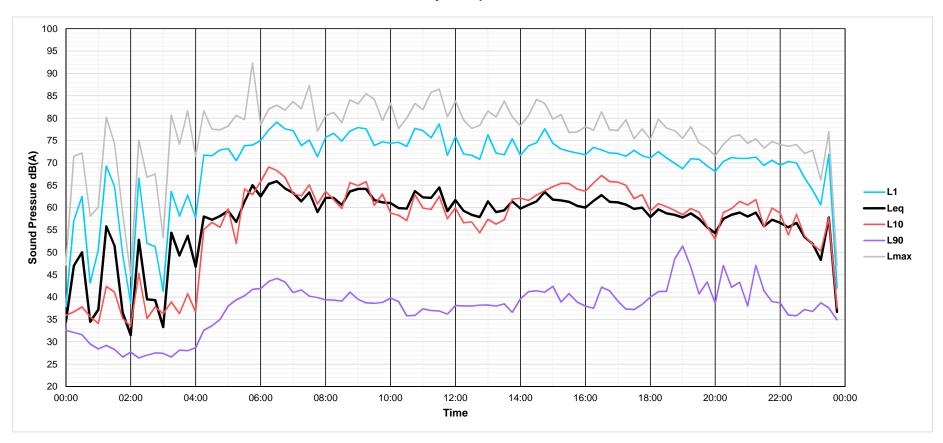

Frequency Weighting A
Time Averaging Fast
Statistical Interval 15 min
Pre-measurement Ref. 94.0
Post-measurement Ref. 94.0
Engineering Units dB SPL

Note

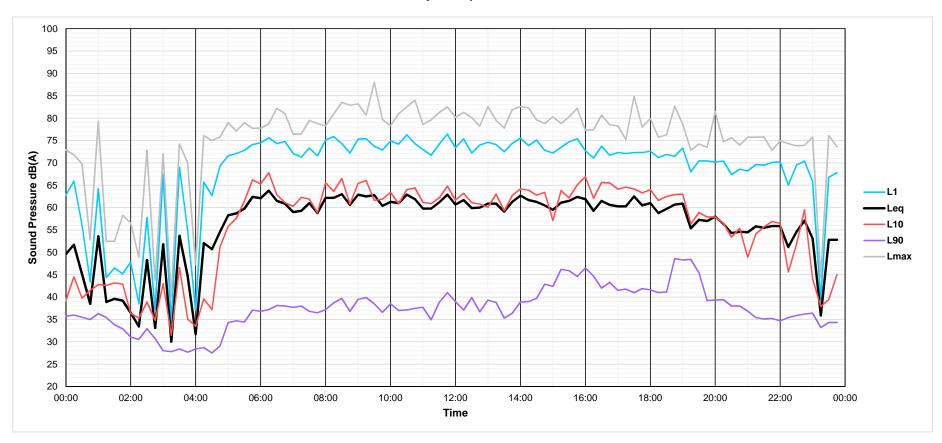
No noise data available

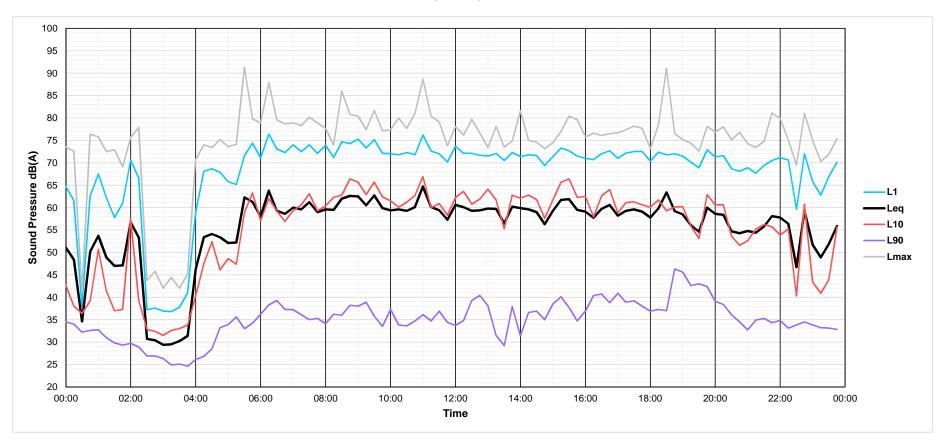

Rainfall recorded on this day

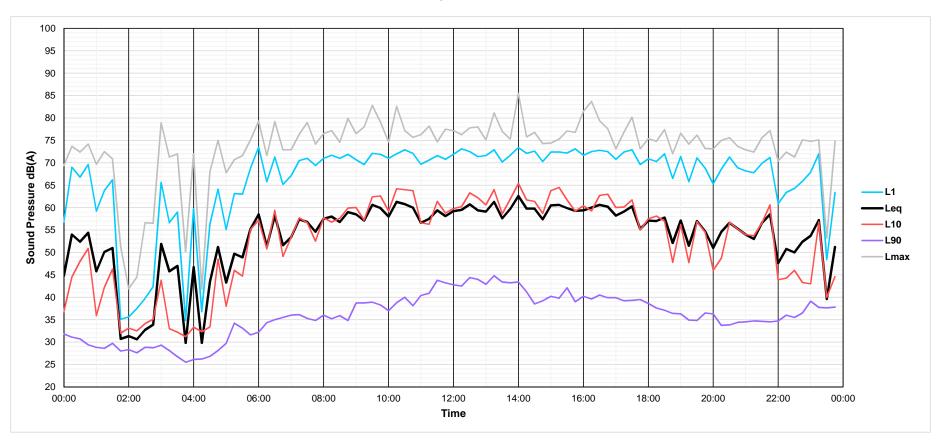
			L _{A10,T}		L _A	eq,T	L _{A90,T}		
Date	Day	18hr day 6am-12am	1hr max 6am-12am	Time for 1hr max	18hr day 6am-12am	8hr night 10pm-6am	18hr day 6am-12am	8hr night 10pm-6am	
28/09/2017	28/09/2017 Thursday		68	6:45	60	48	40	33	
29/09/2017	Friday	60	65	16:45	59	48	39	31	
30/09/2017	Saturday	59	64	9:45	59	46	37	30	
1/10/2017	Sunday	57	63	10:45	57	45	38	32	
2/10/2017	Monday	57	64	15:45	57	49	43	39	
3/10/2017	Tuesday	60	67	8:45	59	48	40	36	
4/10/2017	Wednesday	60	65	8:45	59	46	40	34	
5/10/2017	Thursday	60	65	6:45	60	47	40	35	
Ave	rage	59	65		59	47	40	34	
•	eekdays, fine other	60	66		60	47	40	33	

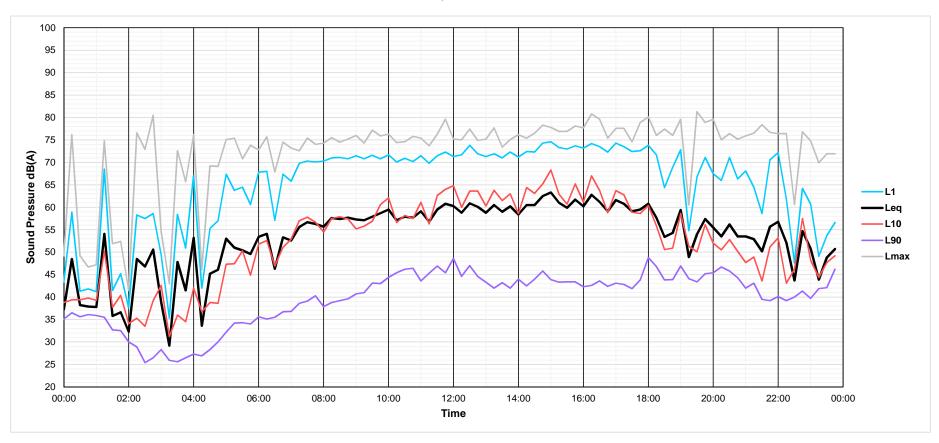


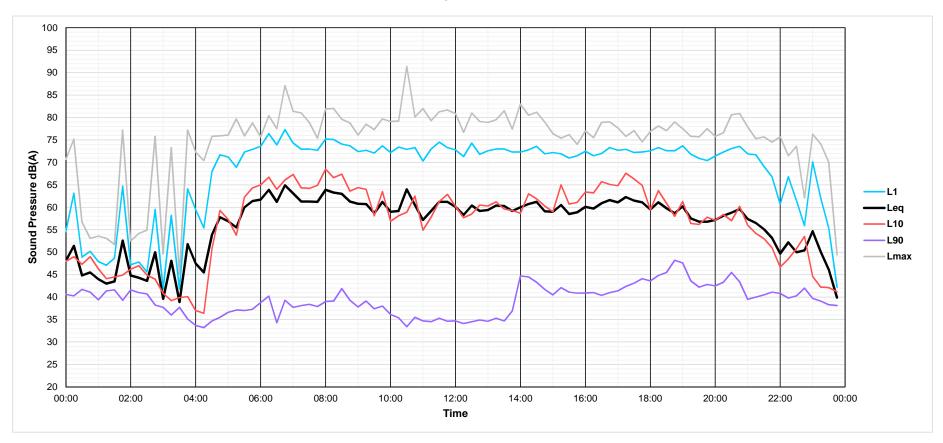
Unattended Noise Measurements - Location 1 Wednesday 27 September 2017

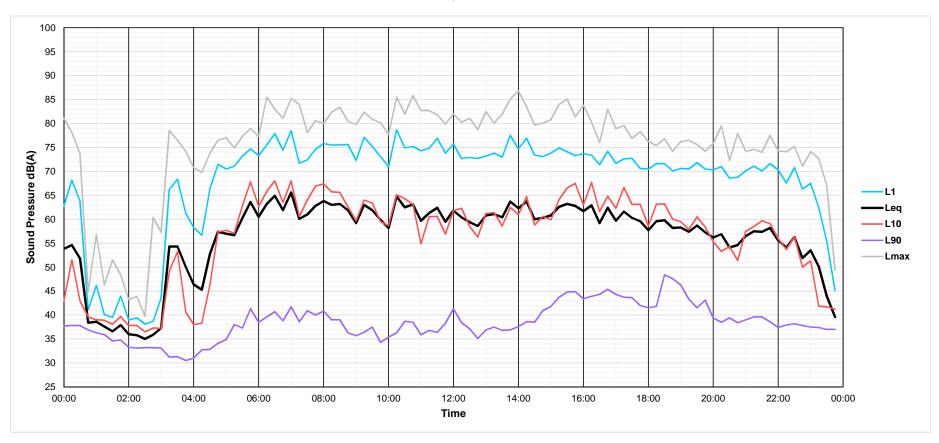


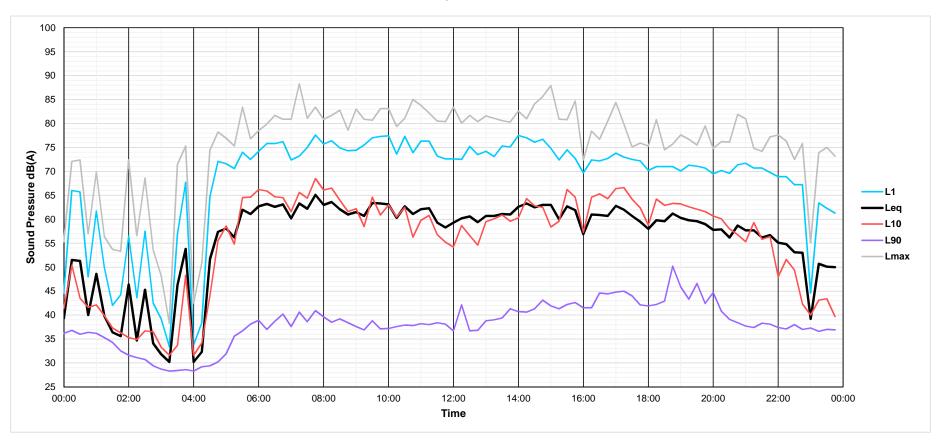

Unattended Noise Measurements - Location 1 Thursday 28 September 2017


Unattended Noise Measurements - Location 1 Friday 29 September 2017


Unattended Noise Measurements - Location 1 Saturday 30 September 2017


Unattended Noise Measurements - Location 1 Sunday 1 October 2017


Unattended Noise Measurements - Location 1 Monday 2 October 2017


Unattended Noise Measurements - Location 1 Tuesday 3 October 2017

Unattended Noise Measurements - Location 1 Wednesday 4 October 2017

Unattended Noise Measurements - Location 1 Thursday 5 October 2017

Unattended Noise Measurements Location 2

Traffic Noise Levels

Logger Location 2 - Raynbird Road, 120m east of Highlands Drive 7m setback from edge of Raynbird Road

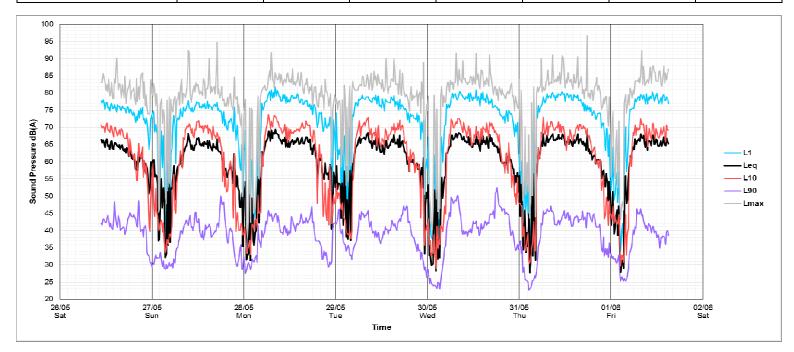
ARL Environmental Noise Logger

Logger Serial Number 87811c

 Measurement Title
 20180526_102614

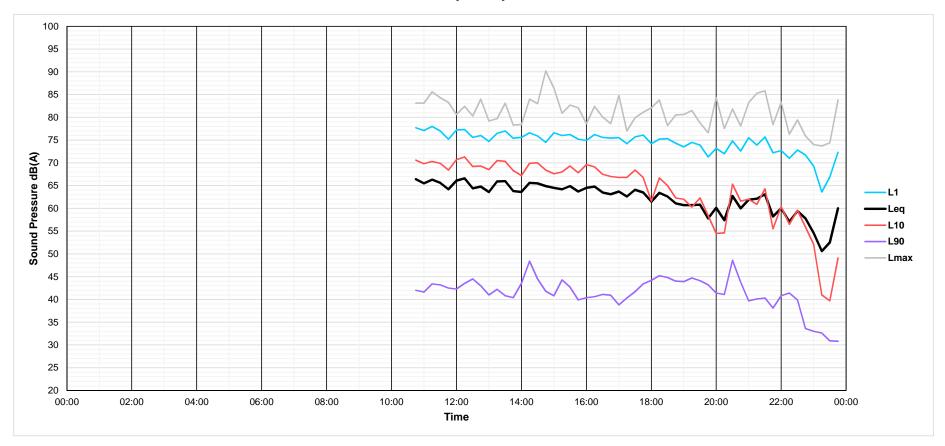
 Measurement started at
 26/05/2018 - 10:26:15

Measurement stopped at 01/06/2018 - 15:05:46

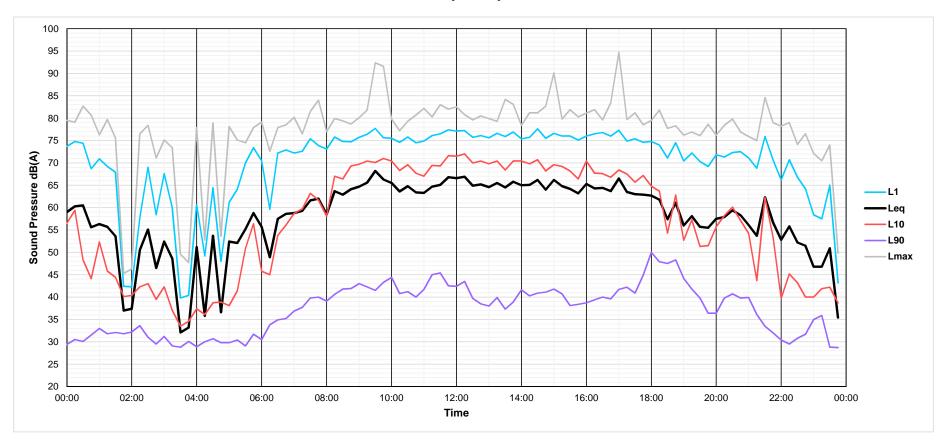

Frequency Weighting A
Time Averaging Fast
Statistical Interval 15 min
Pre-measurement Ref. 94.0
Post-measurement Ref. 94.0
Engineering Units dB SPL

Note

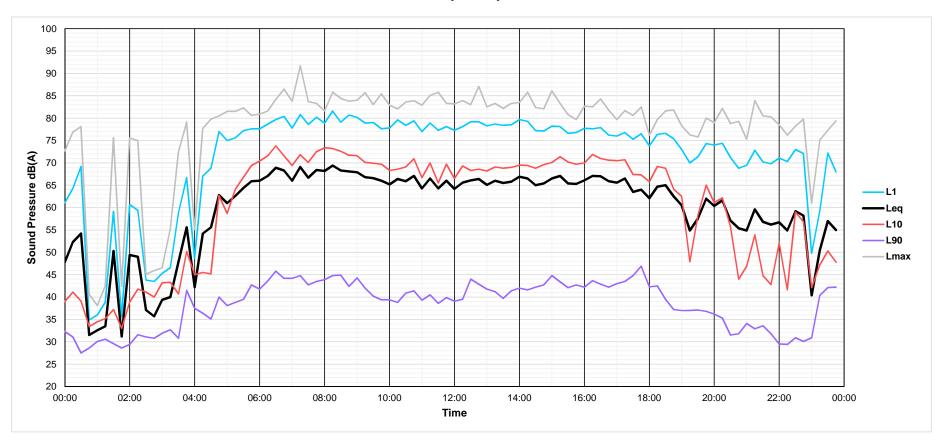
No noise data available

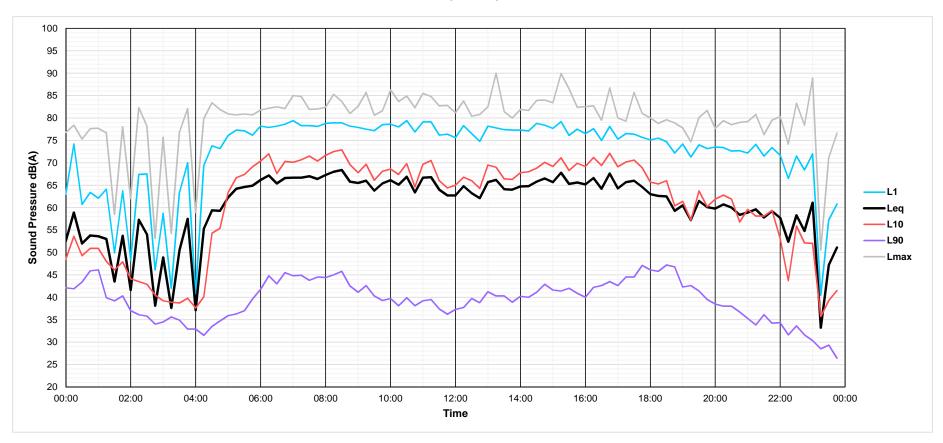

Rainfall recorded on this day

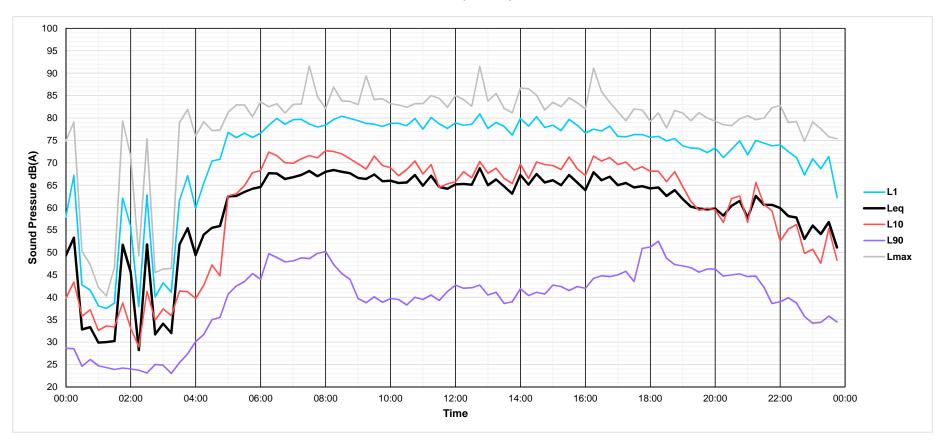
			L _{A10,T}		L _A	eq,T	L _{A90,T}		
Date	Date Day		1hr max 6am-12am	Time for 1hr max	18hr day 6am-12am	8hr night 10pm-6am	18hr day 6am-12am	8hr night 10pm-6am	
26/05/2018	26/05/2018 Saturday		70	12:45	62	51	41	32	
27/05/2018	Sunday	62	71	12:45	61	48	39	33	
28/05/2018	28/05/2018 Monday		73	8:45	63	53	40	37	
29/05/2018	Tuesday	65	72	8:45	63	48	40	30	
30/05/2018	Wednesday	66	72	8:45	64	49	43	31	
31/05/2018	Thursday	65	71	8:45	64	48	42	31	
Average		64	71		63	50	41	32	
Average - we	eekdays, fine ther	65	71		64	48	43	31	

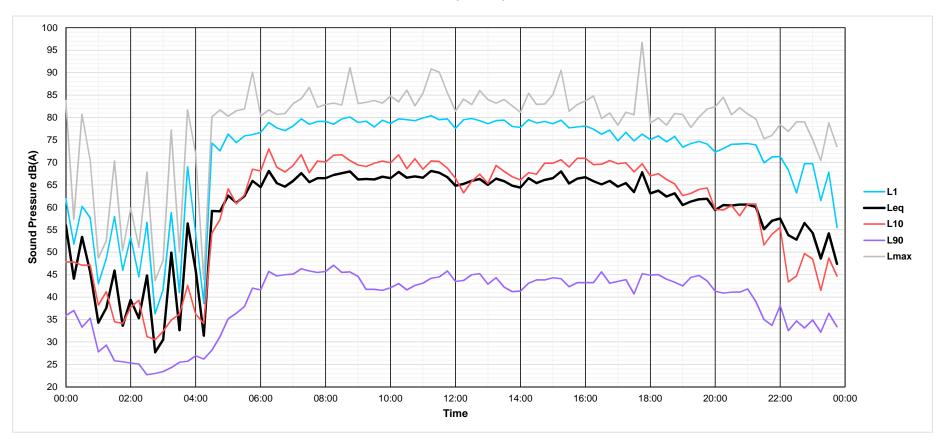


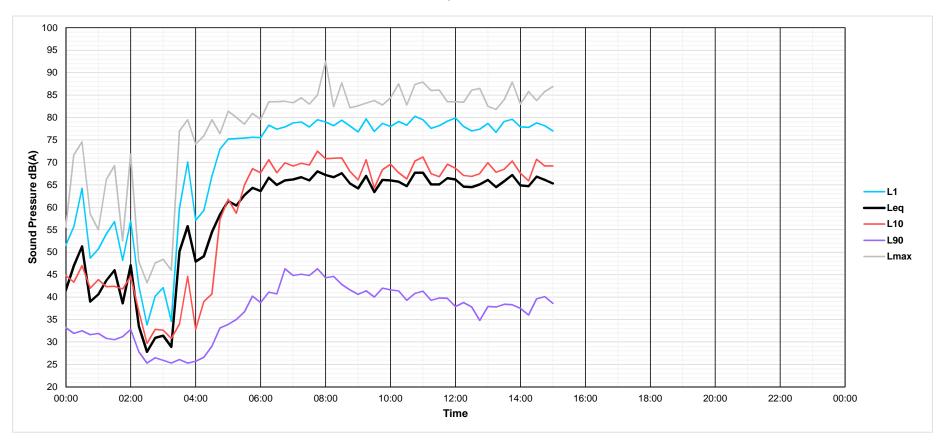
Unattended Noise Measurements - Location 2 Saturday 26 May 2018




Unattended Noise Measurements - Location 2 Sunday 27 May 2018


Unattended Noise Measurements - Location 2 Monday 28 May 2018


Unattended Noise Measurements - Location 2 Tueday 29 May 2018


Unattended Noise Measurements - Location 2 Wednesday 30 May 2018

Unattended Noise Measurements - Location 2 Thursday 31 May 2018

Unattended Noise Measurements - Location 2 Friday 1 June 2018

Appendix E – Moreton Bay Regional Council – Traffic Count Data

Client: Satterley

MetroCount Traffic Executive Weekly Vehicle Counts (Virtual Week)

VirtWeeklyVehicle-5 -- English (ENA)

Datasets:

Site: [ATC 1] RAYNBIRD RD 150M WEST OF HIGHLANDS DR

Attribute: NARANGBA

Direction: 6 - West bound A>B, East bound B>A. **Lane:** 0

Survey Duration: 8:55 Thursday, 22 October 2015 => 10:58 Monday, 2 November 2015,

Zone:

File: narangba2ATC 102Nov2015.EC0 (Plus)

Identifier: HK41AEZ0 MC56-L5 [MC55] (c)Microcom 19Oct04

Algorithm: Factory default axle (v5.02)

Data type: Axle sensors - Paired (Class/Speed/Count)

Profile:

Filter time: 8:56 Thursday, 22 October 2015 => 10:58 Monday, 2 November 2015 (11.0853)

Included classes: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

Speed range: 10 - 160 km/h.

Direction: East (bound), $P = \underline{East}$, Lane = 0-16 **Separation:** Headway > 0 sec, Span 0 - 100 metre

Name: Default Profile

Scheme: Vehicle classification (AustRoads94)

Units: Metric (metre, kilometre, m/s, km/h, kg, tonne)

In profile: Vehicles = 7963 / 16138 (49.34%)

Weekly Vehicle Counts (Virtual Week)

VirtWeeklyVehicle-5

Site: ATC 1.0.1WE

Description: RAYNBIRD RD 150M WEST OF HIGHLANDS DR

Filter time: 8:56 Thursday, 22 October 2015 => 10:58 Monday, 2 November 2015

Scheme: Vehicle classification (AustRoads94)

Filter: Cls(1-12) Dir(E) Sp(10,160) Headway(>0) Span(0 - 100) Lane(0-16)

	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Average	s 1 - 7
Hour							ı	1 - 5	1 - /
0000-0100	2.0	2.0	2.0	2.0	4.5	2.0	10.0	2.7	3.9
0100-0200	1.0	2.0	2.0	0.0	1.0	3.0	1.5	1.1	1.5
0200-0300	1.0	0.0	1.0	2.0	1.0	0.5	1.5	1.0	1.0
0300-0400	4.5	3.0	5.0	5.0	4.0	2.0	3.0	4.3	3.6
0400-0500	13.5	12.0	14.0	12.0	12.0	5.0	3.5	12.7	9.6
0500-0600	25.5	28.0	26.0	17.0	20.5	11.5	8.5 I	23.3	18.5
0600-0700	65.5	46.0	45.0	46.0	48.5	33.0	13.0	52.1	41.5
0700-0800	55.0	73.0	64.0	64.0	75.0	42.0	18.0		52.8
0800-0900	47.5	75.0	76.0	38.5	68.0	69.0	39.0	57.4	56.3
0900-1000	33.0	56.0	54.0	51.0	51.5	68.0	53.0	47.6	51.9
1000-1100	24.0	41.0	36.0	45.5	47.5	53.0	39.0	38.9	41.3
1100-1200	46.0	43.0	40.0	45.0	55.0	56.5	44.5	47.0	48.3
1200-1300	39.0	25.0	31.0	38.0	43.0	49.5	32.5	36.7	38.3
1300-1400	43.0	36.0	39.0	39.5	45.0	36.0	38.5	41.0	39.6
1400-1500	60.0	47.0	53.0	54.0	61.5	46.5	50.5	55.9	53.2
1500-1600	69.0	72.0	60.0	50.0	59.0	47.0	43.5	59.9	54.5
1600-1700	58.0	50.0	50.0	49.5	58.0	42.5	45.0	53.3	49.8
1700-1800	50.0	48.0	33.0	53.0	41.5	34.0	39.5	45.7	42.5
1800-1900	38.0	30.0	20.0	29.5	38.5	25.5	28.0	32.0	30.1
1900-2000	23.0	13.0	22.0	20.0	22.0	18.5	16.0	20.3	19.2
2000-2100	22.0	24.0	14.0	22.0	23.0	10.5	19.5	21.4	19.1
2100-2200	14.0	16.0	17.0	22.0	18.5	10.5	13.0	18.3	15.9
2200-2300	11.0	14.0	6.0	6.5	19.5	13.0	12.0	11.9	12.1
2300-2400	4.0	5.0	1.0	5.5	6.5	12.5	2.5	4.9	5.8
Totals _									
0700-1900	562.5	596.0	556.0	557.5	643.5	569.5	471.0	581.2	558.5
0600-2200	687.0	695.0	654.0	667.5	755.5	642.0	532.5	693.3	654.2
0600-0000	702.0	714.0	661.0	679.5	781.5	667.5	547.0	710.0	672.1
0000-0000	749.5	761.0	711.0	717.5	824.5	691.5	575.0	755.2	710.3
AM Peak	0600	0800	0800	0700	0700	0800	0900		
	65.5	75.0	76.0	64.0	75.0	69.0	53.0		
PM Peak	1500	1500	1500	1400	1400	1200	1400		
	69.0	72.0	60.0	54.0	61.5	49.5	50.5		

^{* -} No data.

MetroCount Traffic Executive Class Speed Matrix

ClassMatrix-6 -- English (ENA)

Datasets:

Site: [ATC 1] RAYNBIRD RD 150M WEST OF HIGHLANDS DR

Attribute: NARANGBA

Direction: 6 - West bound A>B, East bound B>A. **Lane:** 0

Survey Duration: 8:55 Thursday, 22 October 2015 => 10:58 Monday, 2 November 2015,

Zone:

File: narangba2ATC 102Nov2015.EC0 (Plus)

Identifier: HK41AEZ0 MC56-L5 [MC55] (c)Microcom 19Oct04

Algorithm: Factory default axle (v5.02)

Data type: Axle sensors - Paired (Class/Speed/Count)

Profile:

Filter time: 8:56 Thursday, 22 October 2015 => 10:58 Monday, 2 November 2015 (11.0853)

Included classes: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

Speed range: 10 - 160 km/h.

Direction: East (bound), $P = \underline{East}$, Lane = 0-16 **Separation:** Headway > 0 sec, Span 0 - 100 metre

Name: Default Profile

Scheme: Vehicle classification (AustRoads94)

Units: Metric (metre, kilometre, m/s, km/h, kg, tonne)

In profile: Vehicles = 7963 / 16138 (49.34%)

Class Speed Matrix

ClassMatrix-6

Site: ATC 1.0.1WE

Description: RAYNBIRD RD 150M WEST OF HIGHLANDS DR

8:56 Thursday, 22 October 2015 => 10:58 Monday, 2 November 2015 Filter time:

Scheme:

Vehicle classification (AustRoads94) Cls(1-12) Dir(E) Sp(10,160) Headway(>0) Span(0 - 100) Lane(0-16) Filter:

						Class								
	sv	SVT	TB2	TB3	Т4	ART3	ART4	ART5	ART6	BD	DRT	TRT	Tota	<u>al</u>
km/h	1	2	3	4	5	6	7	8	9	10	11	12		
10- 20	5		1									.	6	0.1%
20- 30	33	1	1	18	1							.	54	0.7%
30- 40	41	2	1	10			3					.	57	0.7%
40- 50	183	11	9	1					7	2		.	213	2.7%
50- 60	1482	63	78	26	1	4	6	3	173	102		.	1938	24.3%
60- 70	3121	92	162	51	6	3	16	2	169	139		.	3761	47.2%
70- 80	1513	37	58	16			2		9	13		.	1648	20.7%
80- 90	235	1	7				2					.	245	3.1%
90-100	35											.	35	0.4%
100-110	6											.	6	0.1%
110-120												.	0	0.0%
120-130												. 1	0	0.0%
130-140												. 1	0	0.0%
140-150												. 1	0	0.0%
150-160										•	•		0	0.0%
Total	6654	207	317	122	8	7	29	5	358	256	0	0	7963	
1	83.6%	2.6%	4.0%	1.5%	0.1%	0.1%	0.4%	0.1%	4.5%	3.2%	0.0%	0.0%		

MetroCount Traffic Executive Weekly Vehicle Counts (Virtual Week)

VirtWeeklyVehicle-5 -- English (ENA)

Datasets:

Site: [ATC 1] RAYNBIRD RD 150M WEST OF HIGHLANDS DR

Attribute: NARANGBA

Direction: 6 - West bound A>B, East bound B>A. **Lane:** 0

Survey Duration: 8:55 Thursday, 22 October 2015 => 10:58 Monday, 2 November 2015,

Zone:

File: narangba2ATC 102Nov2015.EC0 (Plus)

Identifier: HK41AEZ0 MC56-L5 [MC55] (c)Microcom 19Oct04

Algorithm: Factory default axle (v5.02)

Data type: Axle sensors - Paired (Class/Speed/Count)

Profile:

Filter time: 8:56 Thursday, 22 October 2015 => 10:58 Monday, 2 November 2015 (11.0853)

Included classes: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

Speed range: 10 - 160 km/h.

Direction: West (bound), P = <u>East</u>, Lane = 0-16 **Separation:** Headway > 0 sec, Span 0 - 100 metre

Name: Default Profile

Scheme: Vehicle classification (AustRoads94)

Units: Metric (metre, kilometre, m/s, km/h, kg, tonne)

In profile: Vehicles = 8165 / 16138 (50.59%)

Weekly Vehicle Counts (Virtual Week)

VirtWeeklyVehicle-5

Site: ATC 1.0.1WE

Description: RAYNBIRD RD 150M WEST OF HIGHLANDS DR

Filter time: 8:56 Thursday, 22 October 2015 => 10:58 Monday, 2 November 2015

Scheme: Vehicle classification (AustRoads94)

Filter: Cls(1-12) Dir(W) Sp(10,160) Headway(>0) Span(0 - 100) Lane(0-16)

	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Average	s 1 - 7
Hour							I		
0000-0100	3.0	4.0	7.0	1.0	1.0	5.0	8.5	2.9	4.3
0100-0200	1.0	0.0	1.0	1.0	2.0	4.0	4.0	1.1	2.2
0200-0300	1.0	0.0	0.0	0.0	0.5	1.5	1.5	0.4	0.8
0300-0400	1.0	0.0	2.0	1.0	0.5	1.0	0.5	0.9	0.8
0400-0500	9.0	6.0	9.0	7.0	8.0	3.5	0.5	8.0	5.8
0500-0600	40.0	47.0	37.0	29.0	37.0	21.5	6.5	38.1	29.4
0600-0700	46.0	31.0	38.0	42.0	44.5	26.5	7.0	41.7	32.6
0700-0800	39.0	32.0	42.0	39.0	38.5	35.0	17.0	38.3	33.8
0800-0900	31.5	49.0	50.0	25.5	51.0	57.0	35.5	39.4	41.7
0900-1000	26.5	43.0	35.0	45.5	54.0	59.0	40.5	41.3	44.1
1000-1100	22.0	39.0	43.0	39.0	41.0	46.0	46.0	35.8	39.2
1100-1200	44.0	35.0	31.0	38.5	54.0	53.0	50.0	42.1	45.5
1200-1300	53.0	33.0	37.0	39.0	53.0	48.5	43.0	43.9	44.5
1300-1400	50.0	46.0	32.0	36.5	38.0	47.0	52.5	39.6	43.3
1400-1500	51.0	57.0	56.0	55.5	58.5	42.5	46.5	56.0	51.8
1500-1600	99.0	75.0	68.0	79.0	71.5	43.0	54.0	77.6	67.0
1600-1700	67.0	68.0	68.0	58.0	68.0	49.0	47.0	65.0	58.8
1700-1800	63.0	72.0	54.0	56.5	65.0	38.5	43.5	61.7	54.2
1800-1900	48.0	34.0	33.0	37.5	45.5	34.0	30.0	40.1	37.2
1900-2000	29.0	30.0	30.0	35.5	26.0	27.0	25.5	30.3	28.8
2000-2100	32.0	22.0	14.0	26.0	32.0	24.0	22.5	26.3	25.2
2100-2200	22.0	17.0	18.0	33.5	27.5	11.5	12.0	25.6	20.5
2200-2300	11.0	11.0	11.0	10.5	20.5	17.0	8.5	13.6	13.3
2300-2400	6.0	5.0	7.0	6.5	6.0	7.5	4.5	6.1	6.1
Totals _									
0700-1900	594.0	583.0	549.0	549.5	638.0	552.5	505.5	580.7	561.1
0600-2200	723.0	683.0	649.0	686.5	768.0	641.5	572.5	704.5	668.3
0600-0000	740.0	699.0	667.0	703.5	794.5	666.0	585.5	724.2	687.6
0000-0000	795.0	756.0	723.0	742.5	843.5	702.5	607.0	775.7	730.9
AM Peak	0600 46.0	0800 49.0	0800 50.0	0900 45.5	1100 54.0	0900 59.0	1100 50.0		
PM Peak	1500 99.0	1500 75.0	1600	1500 79.0	1500 71.5	1600 49.0	1500 54.0		

^{* -} No data.

MetroCount Traffic Executive Class Speed Matrix

ClassMatrix-6 -- English (ENA)

Datasets:

Site: [ATC 1] RAYNBIRD RD 150M WEST OF HIGHLANDS DR

Attribute: NARANGBA

Direction: 6 - West bound A>B, East bound B>A. **Lane:** 0

Survey Duration: 8:55 Thursday, 22 October 2015 => 10:58 Monday, 2 November 2015,

Zone:

File: narangba2ATC 102Nov2015.EC0 (Plus)

Identifier: HK41AEZ0 MC56-L5 [MC55] (c)Microcom 19Oct04

Algorithm: Factory default axle (v5.02)

Data type: Axle sensors - Paired (Class/Speed/Count)

Profile:

Filter time: 8:56 Thursday, 22 October 2015 => 10:58 Monday, 2 November 2015 (11.0853)

Included classes: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

Speed range: 10 - 160 km/h.

Direction: West (bound), P = <u>East</u>, Lane = 0-16 **Separation:** Headway > 0 sec, Span 0 - 100 metre

Name: Default Profile

Scheme: Vehicle classification (AustRoads94)

Units: Metric (metre, kilometre, m/s, km/h, kg, tonne)

In profile: Vehicles = 8165 / 16138 (50.59%)

Class Speed Matrix

ClassMatrix-6

Site: ATC 1.0.1WE

Description: RAYNBIRD RD 150M WEST OF HIGHLANDS DR

8:56 Thursday, 22 October 2015 => 10:58 Monday, 2 November 2015 Filter time:

Scheme:

Vehicle classification (AustRoads94) Cls(1-12) Dir(W) Sp(10,160) Headway(>0) Span(0 - 100) Lane(0-16) Filter:

						Class								
	sv	SVT	TB2	TB3	Т4	ART3	ART4	ART5	ART6	BD	DRT	TRT	Tota	1
km/h	1	2	3	4	5	6	7	8	9	10	11	12		
10- 20	9			1	1							.	11	0.1%
20- 30	22	2	2	4	2				2			.	34	0.4%
30- 40	86	9	9	7			2		3	1		.	117	1.4%
40- 50	322	13	45	30	2	1	2	2	29	23		.	469	5.7%
50- 60	1205	49	145	51	5	3	14	1	139	82	1	.	1695	20.8%
60- 70	3102	84	383	32	4	17	15	3	195	107		.	3942	48.3%
70- 80	1356	25	189	10		7	1		28	26		.	1642	20.1%
80- 90	171	1	29	1		1						.	203	2.5%
90-100	37		3									.	40	0.5%
100-110	8											.	8	0.1%
110-120	3											.	3	0.0%
120-130	1											.	1	0.0%
130-140												.	0	0.0%
140-150												.	0	0.0%
150-160	•			•				•	•		•	.	0	0.0%
Total	6322	183	805	136	14	29	34	6	396	239	1		8165	
	77.4%	2.2%	9.9%	1.7%	0.2%	0.4%	0.4%	0.1%	4.8%	2.9%	0.0%	0.0%		

Appendix F – Validation of Traffic Noise Model

Client: Satterley

Doc No.: ATP170921-R-NIA-02_Stages 8-12 Doc Title: Traffic Noise Impact Assessment

Raynbird Road, Narangba Traffic Noise Validation Model, Year 2017

Receiver	Location	L10(18h)
		dB(A)
Validation_Location 1	GF	60

Raynbird Road, Narangba Traffic Noise Validation Model, Year 2018

Receiver	Location	L10(18h)
		dB(A)
Validation_Location 2	GF	65

Appendix G – 2031 Traffic Noise Model

Client: Satterley

Doc No.: ATP170921-R-NIA-02_Stages 8-12 Doc Title: Traffic Noise Impact Assessment

Receiver	Floor	Facade	L10(18h)	
			dB(A)	
Lot 1227	GF	NW	41	
	F 1		49	
Lot 1227	GF	SW	43	
	F 1		47	
Lot 1227	GF	SE	43	
	F 1		47	
Lot 1227	GF	NE	43	
1 1 1000	F 1	.,	50	
Lot 1228	GF F.1	N	42	
Lot 1228	F 1 GF	W	54 49	
LOT 1226	F 1	VV	55	
Lot 1228	GF	S	53	
LOC 1220	F 1		55	
Lot 1228	GF	Е	47	
	F 1	_	55	
Lot 1229	GF	N	42	
	F 1		55	
Lot 1229	GF	W	48	
	F 1		55	
Lot 1229	GF	S	53	
	F1		55	
Lot 1229	GF	E	48	
	F 1		55	
Lot 1230	GF	N	43	
1 1 1000	F 1	100	55	
Lot 1230	GF F 1	W	47 55	
Lot 1230	GF	S	54	
Lot 1230	F 1		56	
Lot 1230	GF	E	50	
Lot 1200	F 1	-	55	
Lot 1231	GF	N	43	
	F 1		55	
Lot 1231	GF	W	47	
	F 1		56	
Lot 1231	GF	S	54	
	F 1		56	
Lot 1231	GF	E	51	
	F 1		56	
Lot 1232	GF	N	43	
	F 1		56	
Lot 1232	GF 5.4	W	47	
1 44 4000	F 1		56	
Lot 1232	GF F 1	S	55 56	
Lot 1232	GF	E	55	
LOI 1232	F 1		56	
Lot 1233	GF	NW	43	
200 1200	F 1	1,144	54	
		ı	1 - 1	

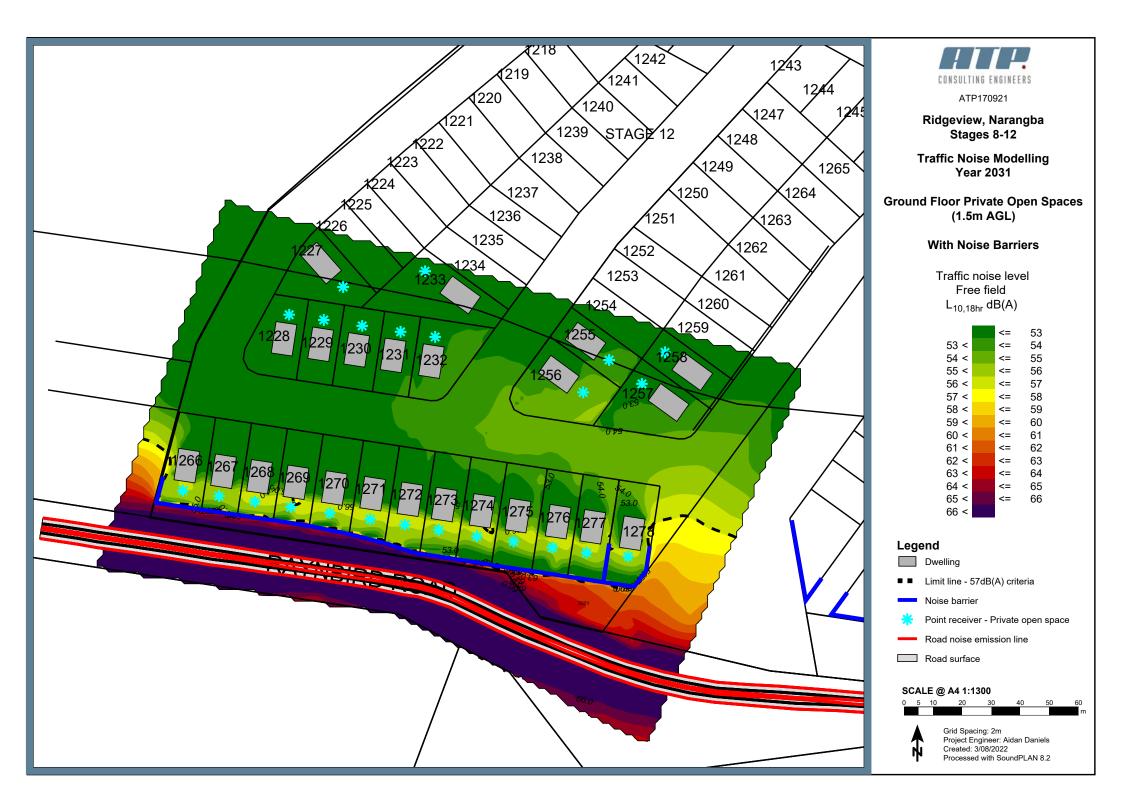
Receiver	Floor	Facade	L10(18h)	
			dB(A)	
Lot 1233	GF	SW	50	
	F 1		54	
Lot 1233	GF	SE	51	
	F 1		54	
Lot 1233	GF	NE	46	
	F 1		54	
Lot 1255	GF	NW	44	
	F 1		55	
Lot 1255	GF	SW	53	
	F 1		55	
Lot 1255	GF	SE	54	
	F 1		56	
Lot 1255	GF	NE	44	
	F1		55	
Lot 1256	GF	NW	45	
	F 1		56	
Lot 1256	GF	SW	55	
	F 1		57	
Lot 1256	GF	SE	56	
	F 1		57	
Lot 1256	GF	NE	47	
	F 1		56	
Lot 1257	GF	NW	46	
	F 1		56	
Lot 1257	GF	SW	55	
	F 1		56	
Lot 1257	GF 5.4	SE	55	
1 1 1057	F 1	N.E	57	
Lot 1257	GF 5.4	NE	44	
L at 4050	F 1	NIVA/	56	
Lot 1258	GF F 1	NW	45 55	
L at 1050	GF	SW		
Lot 1258	F 1	300	52 55	
Lot 1258	GF	SE	54	
LUL 1200	F 1) SE	55	
Lot 1258	GF	NE	44	
LOC 1200	F 1	INL	55	
Lot 1266	GF	N	47	
200 1200	F 1		61	
Lot 1266	GF	W	57	
	F 1		63	
Lot 1266	GF	S	59	
_300	F 1		65	
Lot 1266	GF	Е	55	
	F 1		63	
Lot 1267	GF	N	47	
	F 1		60	
Lot 1267	GF	W	54	
	F 1		62	
	•	•	· ·	

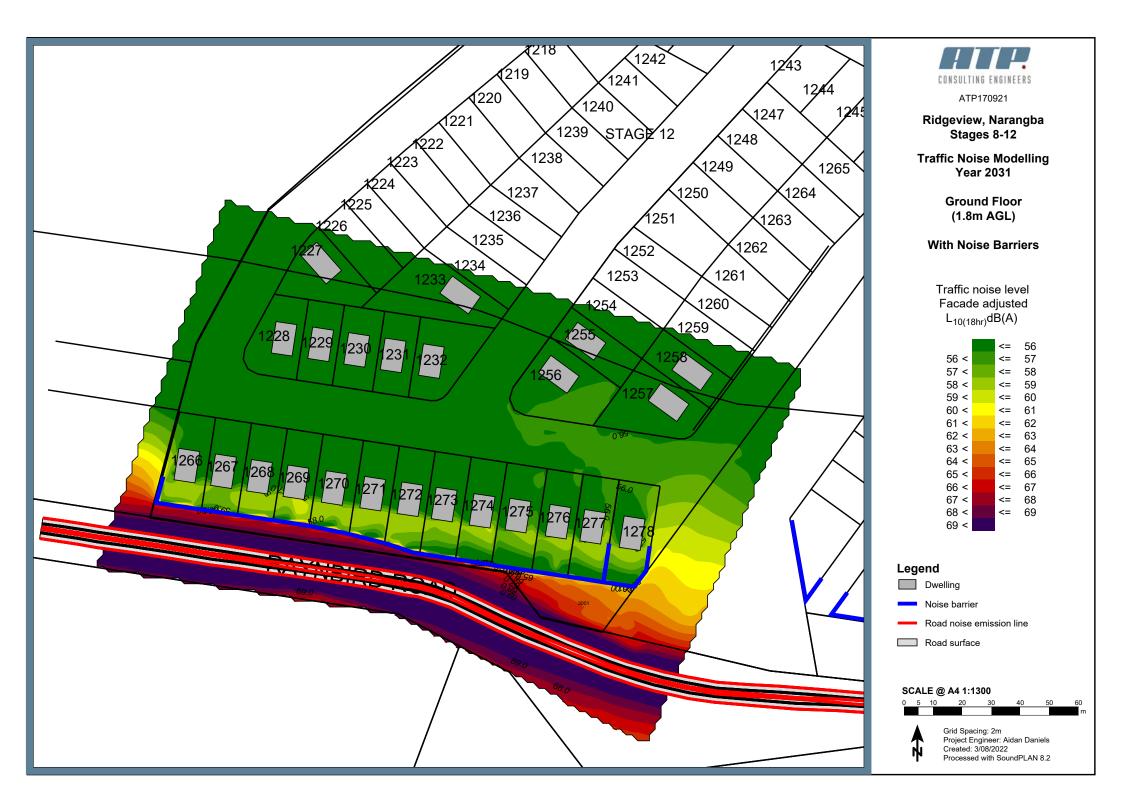
Receiver	Floor	Facade	L10(18h)	
			dB(A)	
Lot 1267	GF	S	58	
	F 1		65	
Lot 1267	GF	E	54	
	F 1		63	
Lot 1268	GF	N	47	
	F 1		60	
Lot 1268	GF	W	54	
	F 1		63	
Lot 1268	GF	S	59	
	F1	_	65	
Lot 1268	GF	E	53	
1 1 1000	F 1	N.	63	
Lot 1269	GF F 1	N	47 61	
Lot 1269	GF	W	54	
Lot 1209	F 1	l vv	63	
Lot 1269	GF	S	59	
200 1200	F 1		65	
Lot 1269	GF	E	53	
	F 1		63	
Lot 1270	GF	N	47	
	F 1		60	
Lot 1270	GF	W	53	
	F 1		62	
Lot 1270	GF	S	58	
	F 1		64	
Lot 1270	GF	E	54	
	F1		62	
Lot 1271	GF 5.4	N	47	
L at 4074	F 1 GF	W	61	
Lot 1271	F 1	l vv	53 62	
Lot 1271	GF	S	59	_
LOC 1271	F 1		64	
Lot 1271	GF	Е	54	
	F 1		62	
Lot 1272	GF	N	47	$\overline{}$
	F 1		61	
Lot 1272	GF	W	52	
	F 1		62	
Lot 1272	GF	S	59	
	F1		63	
Lot 1272	GF 5.4	E	55	
1.440=0	F 1		62	
Lot 1273	GF	N	47	
Lot 1273	F 1 GF	W	61	
LOI 12/3	F 1	l vv	51 61	
Lot 1273	GF	S	59	
200 1270	F 1		63	
	<u> </u>	ı		—

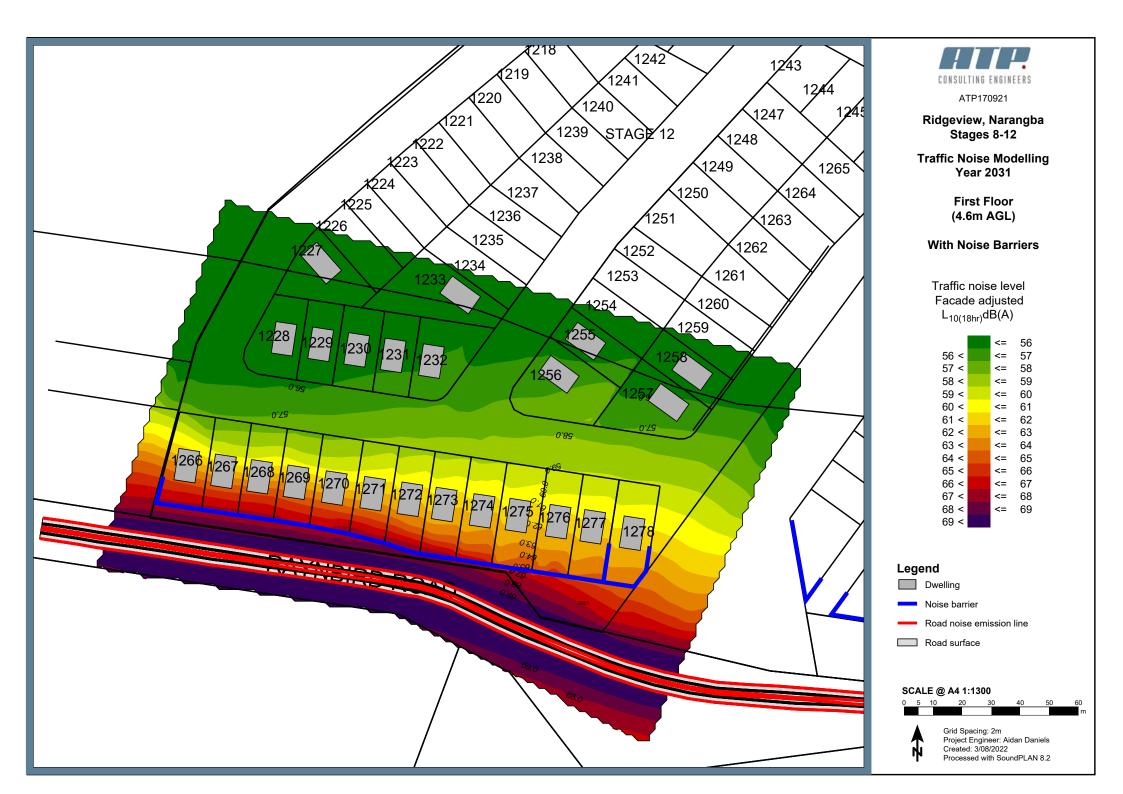
Receiver	Floor	Facade	L10(18h)	
			dB(A)	
Lot 1273	GF	Е	55	
	F 1		62	
Lot 1274	GF	N	47	
	F 1		61	
Lot 1274	GF	W	52	
	F 1		62	
Lot 1274	GF	S	59	
	F 1		63	
Lot 1274	GF	E	57	
	F 1		62	
Lot 1275	GF	N	47	
	F1		61	
Lot 1275	GF	W	52	
	F1		61	
Lot 1275	GF	S	58	
1	F1	<u> </u>	63	
Lot 1275	GF	E	57	
1 + 4070	F1		62	
Lot 1276	GF 5.4	N	47	
1 -4 4070	F 1 GF	W	61	
Lot 1276	F 1	VV	52 61	
Lot 1276	GF	S	58	
LOT 1270	F 1		62	
Lot 1276	GF	E	56	
LOT 1270	F 1	-	62	
Lot 1277	GF	N	47	
200 1277	F 1		61	
Lot 1277	GF	W	52	
	F 1		61	
Lot 1277	GF	S	59	
	F 1		62	
Lot 1277	GF	E	58	
	F 1		62	
Lot 1278	GF	N	47	
	F 1		61	
Lot 1278	GF	W	53	
	F 1		61	
Lot 1278	GF	S	59	
	F 1		62	
Lot 1278	GF	E	58	
	F 1		61	

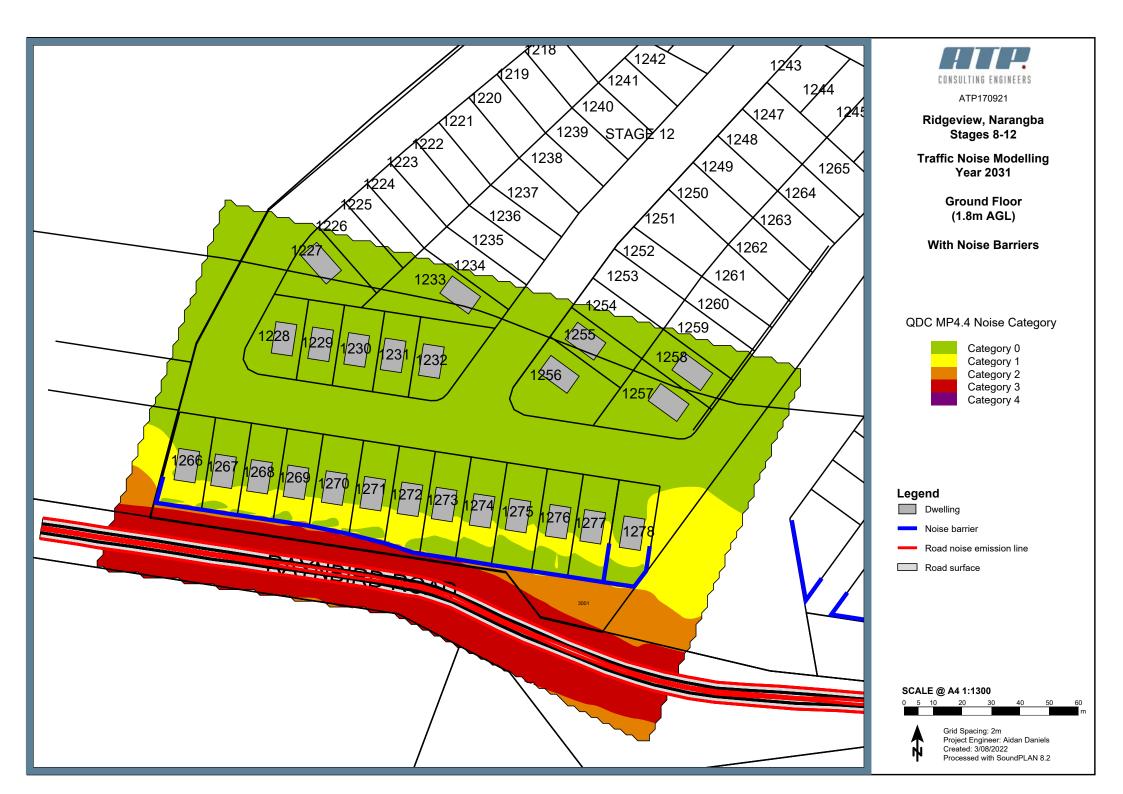
Raynbird Road - Haulage Road Calculated 2031 Road Traffic Noise Levels at Private Open Spaces

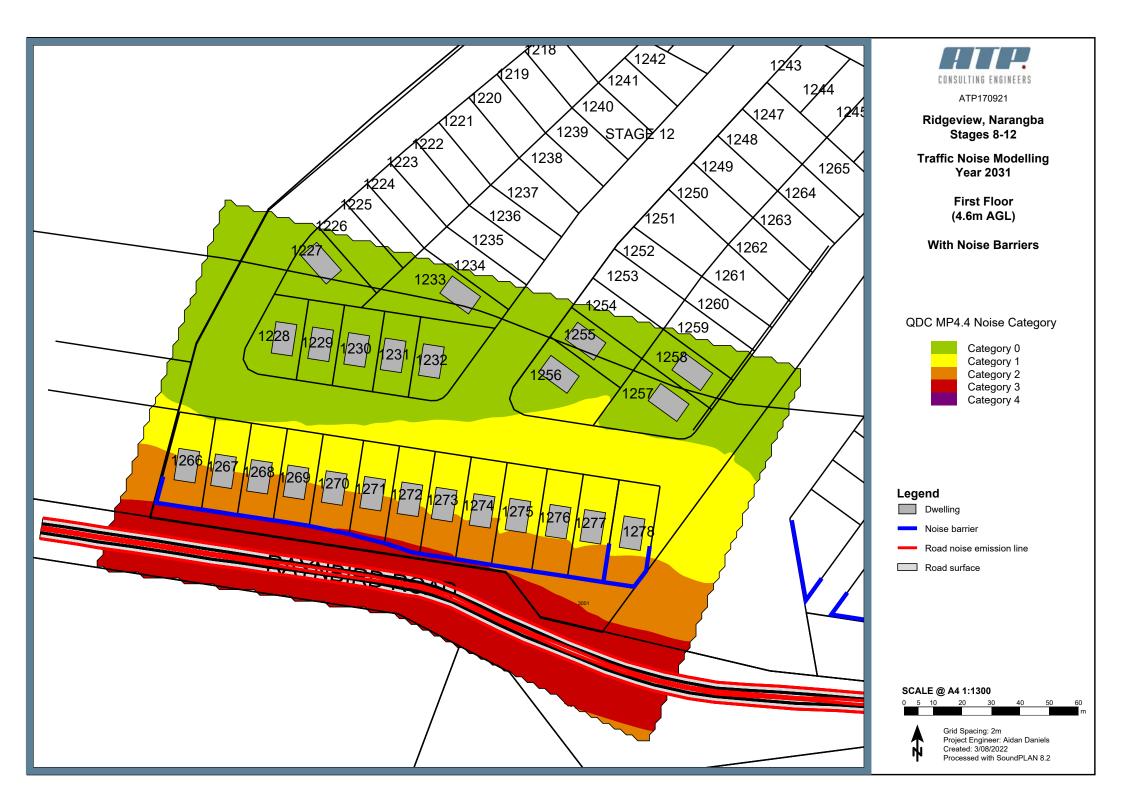
Receiver	Floor
Lot 1227 POS	GF
Lot 1228 POS	GF
Lot 1229 POS	GF
Lot 1230 POS	GF
Lot 1231 POS	GF
Lot 1232 POS	GF
Lot 1233 POS	GF
Lot 1255 POS	GF
Lot 1256 POS	GF
Lot 1257 POS	GF
Lot 1258 POS	GF
Lot 1266 POS	GF
Lot 1267 POS	GF
Lot 1268 POS	GF
Lot 1269 POS	GF
Lot 1270 POS	GF
Lot 1271 POS	GF
Lot 1272 POS	GF
Lot 1273 POS	GF
Lot 1274 POS	GF
Lot 1275 POS	GF
Lot 1276 POS	GF
Lot 1277 POS	GF
Lot 1278 POS	GF






Appendix H – 2031 Grid Noise Map Contours


Client: Satterley


Doc No.: ATP170921-R-NIA-02_Stages 8-12 Doc Title: Traffic Noise Impact Assessment

